총 113 건
비전 솔루션은 제조업, 품질 관리, 자동화 등 다양한 산업 분야에서 시스템의 정확성과 효율성을 크게 향상시키는데 중요한 역할을 합니다. 산업의 환경 및 목적을 충족시키는 비전 시스템이 제대로 작동하려면 각 구성 요소 간의 데이터 전송이 매우 중요합니다. 고속으로 이미지를 취득하고 분석하기 위해서는, 카메라로 촬영한 이미지 데이터가 프레임그래버로 빠르고 정확하게 전달되어야 합니다. 이러한 과정에서 인터페이스(Interface)는 데이터를 안정적으로 전송되도록 하며, 최적으로 구성된 시스템의 높은 속도와 정확성을 유지할 수 있게 해주는 핵심 역할을 합니다. 머신비전에서 주로 사용되는 인터페이스로는 USB3 Vision, GigE Vision, Camera Link, CoaXPress등이 있습니다. 이번 포스팅에서는 인터페이스의 기본적인 개념부터 시작하여 각 인터페이스의 역할과 종류, 그리고 그 중요성에 대해 알아보도록 하겠습니다. 인터페이스의 역할 인터페이스는 카메라와 프레임그래버 사이에서 안정적이고 빠르게 데이터를 전송하는 핵심적인 역할을 수행합니다. 데이터 전송 속도, 대역폭, 전송 거리, 안정성 등 각 프로젝트의 요구 사항에 따라 적절한 인터페이스를 선정하는 것이 중요합니다. 카메라 / 인터페이스 / 프레임그래버의 관계 위의 그림과 같이 프레임그래버, 인터페이스, 그리고 카메라는 머신비전 시스템에서 상호 연관되어 작동합니다. 카메라는 이미지를 캡처하여 아날로그 또는 디지털 신호를 생성하고, 프레임그래버는 이를 디지털 이미지로 변환해 컴퓨터로 전송합니다. 인터페이스는 이 데이터 전송 경로를 제공하며, 속도와 신뢰성을 보장해 시스템의 성능과 효율성을 극대화합니다. 인터페이스의 특징 인터페이스의 종류 머신비전에서 사용되는 주요 인터페이스로는 USB3 Vision, GigE Vision, Camera Link, CoaXPress 등이 있으며, 각각의 특징, 대역폭, 속도 차이 등을 살펴보겠습니다. *인터페이스 별 속도 및 케이블 길이 변화 그래프 USB3 Vision : USB 3.0을 기반으로 한 인터페이스 USB3 Vision 인터페이스는 USB 3.0을 기반으로 하며, 설치가 간편하고 비용이 저렴하며, 일반적으로 3M~5M의 케이블 길이를 지원합니다. 대역폭은 최대 5 Gbps이며, 실제 데이터 전송 속도는 약 400 MB/s 입니다. 또한 다양한 USB 장치와의 호환성 덕분에 시스템 통합이 용이하고, 고속 데이터 전송을 지원하는 데 적합합니다. GigE Vision : 기가비트 이더넷을 기반으로 한 인터페이스 GigE Vision 인터페이스는 데이터 전송 속도와 거리 측면에서 매우 유리하며, 고해상도 이미지를 안정적으로 전송할 수 있습니다. 최대 100미터 거리까지 데이터를 전송할 수 있으며, 중간에 스위치나 리피터를 사용하면 더 긴 거리로 확장할 수 있습니다. 가격이 저렴하고 시스템 구성은 표준 네트워크 장비를 통해 유연하게 할 수 있어, 여러 대의 카메라를 쉽게 연결해 다중 카메라 시스템을 구축할 수 있습니다. 검사 환경과 요구 사항에 맞춰 GigE, 5GigE, 10GigE 중 적절한 버전을 선택하는 것이 중요합니다. Camera Link(CL) : 고속 디지털 비디오 전송을 위한 산업 표준 인터페이스 Camera Link는 고속 병렬 데이터 전송을 위한 표준 인터페이스로, 매우 높은 대역폭과 긴 전송 거리를 지원합니다. Camera Link 인터페이스는 약 5M의 케이블 길이를 권장하며, 최대 약 10M까지 연장이 가능합니다. 1개의 보드에 최대 2개의 케이블을 사용하여 데이터를 전송할 수 있습니다. 대역폭은 기본모드(Base Configuration)에서 최대 2.04 Gbps, 전체모드(Full Configuration에서 최대 6.8 Gbps입니다. 전체 모드일 경우 보통 두개의 병렬 케이블을 사용합니다. Camera Link는 최대 85MHz의 시리얼 클럭 주파수를 제공하므로 높은 대역폭에서의 고속 촬영에 적합합니다. * Base Configuration은 Camera Link의 기본 설정으로, 최대 2.04 Gbps의 대역폭을 지원하며, 표준 해상도와 프레임 속도의 데이터 전송에 적합 * Full Configuration은 Camera Link의 고속 설정으로, 최대 6.8 Gbps의 대역폭을 지원하며, 고해상도와 빠른 프레임 속도의 데이터 전송에 적합 *시리얼 클럭 주파수 : 데이터 전송 속도를 제어하는 신호의 반복 속도로, 주파수가 높을수록 데이터 전송 속도가 빨라짐. CoaXPress(CXP) : 동축 케이블을 사용한 고속 데이터 전송 인터페이스 ? CoaXPress는 동축 케이블을 사용하여 초고속 데이터 전송을 지원하는 인터페이스로, 높은 전송 속도와 긴 전송 거리를 제공합니다. 또한 1개의 보드에 최대 8개의 CXP 케이블을 연결할 수 있어 고속 이미지 처리와 같은 어플리케이션에 특히 유리하며 최신 기술을 반영하여 설계된 만큼 우수한 성능을 보입니다. CoaXPress는 하나의 케이블에 데이터 전송, 카메라 제어, 전원 공급, 트리거링(동작 시작 신호) 등 4가지 기능을 수행하기 때문에 유연성이 뛰어납니다. 1. CoaXPress(CXP) 케이블 * 종류 * CoaXPress (CXP) 인터페이스는 DIN, Micro BNC, BNC 세 가지 주요 커넥터 타입을 사용하여 데이터 전송을 최적화합니다. 각 케이블 타입은 다양한 전송 요구와 시스템 설계에 맞춰 선택되며, 다음과 같은 특징이 있습니다. *Resource : 코비스테크놀로지 * 길이 * 규격별 CoaXPress (CXP) 인터페이스의 케이블 길이는 전송 속도에 따라 달라집니다. 기본적으로 CXP는 최대 130미터까지 케이블 길이를 지원하지만, 전송 속도가 증가할수록 케이블 길이는 줄어듭니다. 이는 높은 속도에서 신호 감쇠와 노이즈의 영향을 줄이기 위함입니다. 따라서, 전송 속도가 높을수록 케이블 길이를 짧게 유지해야 신호 품질을 보장할 수 있습니다. CoaXPress는 케이블 표준에 따라 대역폭과 사용 가능한 길이가 달라집니다. *케이블 길이가 길어질수록 노이즈가 증가할 수 있음 * 표준 * CoaXPress (CXP) 표준은 CXP 1.0과 CXP 2.0 규격의 두 가지 주요 버전이 있습니다. * CoaXPress(CXP)와 Camera Link(CL)의 차이 * CoaXPress(CXP)는 높은 데이터 전송 속도와 대역폭을 지원하며, 장거리 데이터 전송이 가능합니다. 1개의 보드에 최대 8개의 CXP 케이블을 연결할 수 있어 고속 이미지 처리와 같은 어플리케이션에 주로 적용됩니다. Camera Link는 신뢰성 높은 인터페이스로 사용되어 왔습니다. 안정적인 성능을 제공하며, 1개의 보드에 최대 2개의 케이블을 사용하여 데이터를 전송할 수 있습니다. 또한 다양한 카메라와의 호환성이 높은 것이 특징입니다. 각각의 검사 환경과 플리케이션 목적에 따라 적합한 인터페이스를 선택하여 시스템 성능과 효율성을 최적화하는 것이 좋습니다. *CXP와 Camera Link 구성의 예* 다양한 산업의 환경 및 검사 조건에 따라 적절한 인터페이스를 선택하면 데이터 전송 속도와 시스템의 유연성을 최적화하여, 최상의 성능을 발휘할 수 있습니다. 인터페이스 선정에 전문가의 도움이 필요하시다면, 언제든 화인스텍을 찾아주세요!
2024.09.03VICO Imaging(비코이미징)은 전문 기술을 바탕으로 머신 비전 렌즈를 개발 및 제조하는 기업입니다. VICO Imaging은 렌즈, 스마트 카메라, 조명, 케이블, 컨트롤러, 디지털 이미지 테스트 솔루션을 제공해왔습니다. 이번 포스팅에서는 VICO Imaging의 360° View Series (내부 표면 검사 렌즈와 외부 표면 검사 렌즈)에 대해 소개해드리려고 합니다. 이 렌즈 시리즈는 내부와 외부 벽의 상태를 빠르고 정밀하게 점검할 수 있습니다. 각각의 렌즈는 고해상도의 이미지와 넓은 시야각을 제공하여, 기존의 검사 방법보다 훨씬 효율적이고 정확한 진단이 가능합니다. 하단과 내부 벽을 높은 해상도와 깊은 심도로 선명하게! 360° 전면 내부 표면(Surface) 검사 렌즈 (Inner Wall Inspection Lenses) : PRHI230-82 VICO Imaging의 첨단 광학 기술이 담긴 PRHI230-82 렌즈는 복잡한 구조물의 내부의 전면을 빠르고 정확하게 검사할 수 있습니다. 이 렌즈는 좁고 접근이 어려운 공간에서도 선명한 이미지를 제공하여 뛰어난 성능을 발휘합니다. < Product Features > 360도 Inner Wall Inspection Lenses의 구조, 크기, 작동 거리 * 작동 거리에 따라 직경 5~120mm, 높이가 4~120mm인 대상물을 검사할 수 있습니다. < 측정 가능 사양 > Vico Imaging은 타사 제품에 비해 더 넓은 시야를 제공합니다. 넓은 작동 거리 범위인 5~65mm를 지원하여 다양한 거리에서 유연하게 작업할 수 있으며, 50.8mm의 짧은 길이로 공간 효율성이 뛰어나 설치와 운용이 간편합니다. 또한, 최대 외경이 26mm로 작아 좁은 공간에서도 효과적으로 사용될 수 있어, 다양한 환경에서 보다 효과적으로 사용할 수 있습니다. 비코이미징의 우수한 이미지 품질 내부 전면 검사 렌즈는 360도 전면에서 높은 해상도와 깊은 심도로 내부 구조를 정밀하게 검사할 수 있습니다. 이로 인해 미세한 결함도 명확하게 포착할 수 있으며, 신뢰성 있는 검사 결과를 제공합니다. 내부 전면 검사 렌즈는 타사 제품에 비해 더 우수한 검사 품질과 세밀함을 자랑하며, 다양한 산업 분야에서 품질 관리를 강화하는 데 중요한 역할을 합니다. < Applications > 배터리 셀을 조립하기 전에 원통 내부에서 접근하여 내부 표면 결함 유무에 대한 정확한 검사가 필요합니다. VICO Imaging의 내부 전면 검사 렌즈는 배터리 원통 내부를 채우기 전에 정밀한 검사를 수행하는 데 효과적입니다. 배터리 원통 내부 검사 Resource : Tesla - Making Batteries 내부 검사 렌즈는 미세한 결함(예: 스크래치, 불균일한 표면, 이물질, 균열 등)을 발견할 수 있습니다. 또한 전해질이나 전극을 넣기 전에 내부가 완벽한 상태인지 확인합니다. 고해상도의 이미징을 통해 내부 표면 상태를 정확히 파악하고, 결함이 있는 원통을 식별하여 불량품을 조립 과정에서 제거함으로써 최종 제품의 품질과 안전성을 높입니다. 테슬라 4680 배터리에 활용을 한다면? Resource : Tesla - Making Batteries VICO Imaging의 내부 검사 렌즈를 활용하게 된다면, 원통형으로 설계된 테슬라 4680 배터리의 내부 표면을 정밀하게 검사하여 결함이나 불균일한 부분을 정확히 식별할 수 있습니다. 이 렌즈는 고해상도와 전방위 이미징을 제공하여 미세한 결함도 포착할 수 있으며, 배터리 제조 과정에서 품질 보증의 중요한 역할을 합니다. 테슬라의 혁신적인 배터리 기술에 통합되면 고품질 전기차 배터리 생산에 큰 도움이 될 것이며, 대량 생산 과정에서 제조 공정의 효율성을 높이고 최종 제품의 신뢰성을 강화하는 데 중요한 역할을 할 수 있습니다. 내부 검사 렌즈는 배터리뿐만 아니라 식품, 의료, 자동차 등 다양한 산업 분야에서도 활용됩니다. 고해상도와 깊은 피사계 심도(DOF)로 원통형, 구멍, 나사 구멍 등의 결함을 완벽하게 검사할 수 있으며, 작은 물체도 높은 정확도로 검사하는 우수한 성능을 제공합니다. 하나의 렌즈로 상단 및 측면 이미징 360° 전면 외부 표면(Surface) 검사 렌즈 (Outer Wall Inspection Lenses) : PRO230-C270-230-S16 정밀한 소형 부품의 외부 검사는 산업 현장에서 중요합니다. 최신 외부 전면 검사 장비 PRO230-C270-230-S16는 미세한 결함을 정확하게 포착하며, 검사 효율성을 크게 향상시킵니다. 이를 통해 품질 관리를 간소화하고 부품 신뢰성을 높일 수 있습니다. < Product Features > * 작동 거리에 따라 직경 5~30mm, 높이가 3~18mm인 대상물을 검사할 수 있습니다. 외부 표면 단독 검사 / 상단을 포함한 외부 표면 전체 검사 < Applications > 외부 전면 검사 렌즈는 다양한 분야에서 활용될 수 있습니다. 전자기기, 의료기기, 정밀 기계 등의 외벽과 측면을 정밀하게 검사하여 결함이나 손상을 조기에 발견하는 데 유용합니다. 또한, 병뚜껑, 약병, O-링, 나사 제품 등 포장 부품의 결함 검출에도 널리 사용될 수 있습니다. 약병 검사 Resource : google image 약병의 외부 표면을 정밀하게 검사하여 결함(예: 크랙, 기포, 불완전한 인쇄 등)을 확인합니다. 이 렌즈는 약병의 다양한 모양과 크기에 적합하게 설계되어 있으며, 고해상도 이미징을 통해 약병의 외관을 정확하게 평가할 수 있습니다. 이를 통해 약품의 안전성을 보장하고, 생산 과정에서의 품질 관리를 강화할 수 있습니다. O-링 검사 Resource : google image O-링의 외부 표면에서 발생할 수 있는 결함(예: 균열, 찌그러짐, 불균형 등)을 정밀하게 검사합니다. 외부 전면 검사 렌즈는 O-링의 작은 결함도 포착할 수 있으며, 고해상도 이미징을 통해 정확한 검사 결과를 제공하여 최종 제품의 신뢰성을 높이는 데 도움을 줍니다. 나사 제품 검사 Resource : google image 나사 제품의 외부 및 나사산을 전방위로 검사하여 결함(예: 나사산의 불완전한 형성, 표면 스크래치, 변형 등)을 확인합니다. 이 렌즈는 나사 제품의 복잡한 형상과 구조를 효과적으로 검사하며, 고해상도 이미징을 통해 세밀한 결함까지도 정확히 식별할 수 있습니다. 이를 통해 나사의 품질을 보장하고, 사용 중 발생할 수 있는 문제를 사전에 예방할 수 있습니다. VICO Imaging의 내부 전면 검사 렌즈와 외부 전면 검사 렌즈는 각각 외벽과 내부 벽 검사를 위한 혁신적인 솔루션을 제공합니다. 내부 전면 검사 렌즈는 내부 벽의 검사를 위한 특화된 도구로, 좁은 공간에서도 360도 전방위 이미징을 통해 높은 해상도와 깊은 심도로 내부 구조를 정밀하게 검사합니다. 이 렌즈는 기계 내부나 작은 부품의 세밀한 상태를 효과적으로 확인할 수 있으며, 다양한 산업 분야에서 신뢰성 있는 검사 결과를 제공합니다. 반면, 외부 전면 검사 렌즈는 외부 결함 검출을 위한 뛰어난 도구로, 전자기기, 의료기기, 정밀 기계 등 다양한 산업 분야에서 높은 정확도로 외벽을 검사합니다. 이 렌즈는 병뚜껑, 약병, O-링, 나사 제품 등 포장 부품의 결함 검출에도 널리 사용되는 등 폭넓은 적용이 가능하며, 360도 전방위에서 고해상도 이미지를 제공하여 미세한 결함까지 정확히 포착할 수 있습니다. VICO Imaging 제품에 대해 더 자세히 알고 싶으시다면 화인스텍을 방문해 주시기 바랍니다.
2024.08.29line scan application 라인스캔 머신비전 기술은 대형, 고해상도, 고속 이미지 캡처가 필요한 결함 없는 이미지를 검사하는 데 적합한 머신비전 기술입니다. 예를 들어 종이, 섬유, 금속, 유리 테이프 등과 같이 대형 웹(web) 이미지 검사를 위해서는 라인스캔 카메라 기술이 사용되어야 합니다. 라인스캔 기술은 일련으로 연속된 이미지 데이터를 취득하기 때문에 데이터 양이 방대합니다. 또한 고속으로 이동하는 물체의 이동 속도와 카메라의 이미지 캡처 속도를 동기화시켜 정확한 이미지를 확보해야 합니다. 이러한 이유로 고속으로 이미지를 취득하고 취득한 데이터를 처리하여 PC로 전송하는 기술이 필요합니다. 즉, 고속으로 이미지를 전송하는 인터페이스와 고속으로 데이터 처리하는 프레임그래버 조합은 라인스캔 비전 검사에서 있어 대량의 이미지 데이터를 효율적으로 처리하는 핵심 요소입니다. 이를 통해 이미지 처리의 가장 중요한 데이터 흐름을 유지하여 머신비전 시스템의 성능과 효율성을 높입니다. 이러한 면에서 Euresys Coaxlink Quad CXP-12 DF 프레임 그래버는 해상도, 프레임 속도 및 대역폭 측면에서 기존의 한계를 뛰어넘는 성능을 제공합니다. web"*: 종이, 섬유, 금속, 플라스틱, 유리 등과 같은 재료가 롤 형태로 연속적으로 움직이는 것을 의미합니다. 1 Euresys Coaxlink Quad CXP-12 DF Euresys의 Coaxlink Quad CXP-12 DF 프레임 그래버는 CoaXPress 2.0 표준의 CXP-12 모드를 활용하여 기존 CoaXPress 1.0 규격의 CXP-6보다 두 배 빠른 12.5 Gbps의 확장된 대역폭을 제공합니다. 이미지 데이터를 전송하는 인터페이스 종류와 대역폭 또한 최신 PCI Express 버스*(통신시스템)의 기능과 결합하여 초당 수 기가바이트의 이미지 데이터를 PC 메모리로 전송할 수 있습니다. CoaXpress*는 대량의 데이터를 고속으로 전송하는 인터페이스. 프레임 그래버: 카메라로부터 받은 영상 신호를 디지털 데이터로 변환시켜 주는 영상 캡처 장치. CXP-12: CXP는 CoaXpress의 약자로 12는 데이터 전송 속도, 즉 12기가 바이트를 뜻함. PCI 버스(Peripheral Component Interconnect Bus)는 컴퓨터 메인보드에 주변 장치를 장착하는 데 쓰이는 컴퓨터 버스의 일종. 컴퓨터 버스: 컴퓨터 안의 여러 장치 사이를 연결해 데이터와 주소, 제어 신호 등 정보를 전송하는 통로(통신 시스템). 데이터 흐름(Data flow): 시스템 내에서 데이터가 이동하고 처리되는 방식과 경로를 의미. 데이터가 생성되거나 수집된 이후, 저장되고 처리되며 최종적으로 호스트 pc에 전송되는 과정. Coaxlink Quad CXP-12 DF 주요 사양 CoaXPress CXP-12 연결 4개 및 데이터 전달 출력 4개: 카메라 대역폭 5,000 MB/s PCIe 3.0(Gen 3) x8 버스: 버스 대역폭 6,700 MB/s 다기능 디지털 I/O 라인 10개 폭넓은 카메라 제어 기능 Memento 이벤트 로그 툴 디지털 I/O 라인: input, output 데이터 입출력을 의미. PCIe 3.0 (Gen 3): PCIe의 세 번째 세대, 3.0 버전, 8 레인을 가진 PCIe 슬롯을 의미. 각 레인은 데이터 전송 경로를 의미하며, 8 레인 슬롯은 동시에 8개의 데이터 경로를 통해 정보를 전송할 수 있음. Memento 이벤트 로그 툴: 시스템 운영 중 발생한 오류 등을 기록한 이벤트 로그를 관리하는 도구. 이를 통해 문제를 진단하고 해결하는 데 도움이 된다. 비전 검사에서 사용되는 라인스캔 카메라는 고해상도 및 고속으로 일련의 이미지를 캡처하기 때문에 이미지 데이터 양이 큽니다. 그러므로 일부 산업의 비전 검사에서 여러 코어 CPU를 사용하더라도 처리해야 할 데이터가 너무 많아 1대의 PC로는 충분한 성능을 제공하기 어려운 경우가 있습니다. 이미지 데이터 처리 속도가 부족하면 이미지 분석, 객체 인식, 데이터 해석에 문제가 발생할 수 있습니다. 따라서 작업의 효율성을 높이기 위해 여러 대의 PC에 작업을 분산시켜 데이터 처리와 전송 속도를 확장해야 합니다. 2 데이터 전달 기능(Data Forwarding)이 있는 4개 채널 Coaxlink Quad CXP-12 DF 프레임 그래버 Coaxlink Quad CXP-12 DF는 DF(Data Forwarding) 기능을 지원합니다. 이 기능은 여러 대의 PC에 분배하여 이미지 처리 작업 부화를 방지합니다. Coaxlink Quad CXP-12 DF는 고속 카메라로 수집한 이미지 데이터를 CoaXPress 인터페이스를 통해 수신받고 동일한 데이터를 PCI Express 버스를 통해 호스트 PC로 전송합니다. 동시에 같은 데이터를 출력포트로 다른 장치(PC)나 시스템에 전달합니다. PCI 버스(Peripheral Component Interconnect Bus)는 컴퓨터 메인보드에 주변 장치를 장착하는 데 쓰이는 컴퓨터 버스의 일종 이러한 방식으로 하나의 카메라를 여러 PC 장치와 연결하는 데이지 체인*방식으로 연결할 수 있습니다. 즉, 하나의 카메라에 최대 10대의 컴퓨터에 연결하여카메라에서 수집된 데이터를 모든 PC에서 동시에 수신하여 처리합니다. 데이지 체인(Daisy Chain): 데이지 체인(daisy chain)이란 연속적으로 연결된 하드웨어 장치들의 구성을 지칭. 게다가 마스터 Coaxlink Quad CXP-12 DF 보드는 CoaXPress 비트스트림*에서 각 서브 보드의 동기화, 데이터 수집, 처리, 전송을 조정합니다. 마스터 CoaXlink 보드는 모든 장치 간의 회선까지 완벽하게 동기화하여 수집한 데이터가 정확하게 일치하도록 합니다. 이를 통해, 트리거(데이터 전송) 신호를 조정합니다. 비트스트림: 데이터 통신 회로들을 통해서 연속적으로 전송이 되는 일련의 비트열로 데이터들을 하는 스트림의 단위 Coaxlink Quad CXP-12 DF 보드는 데이터 포워딩 기능 덕분에 각 PC에 하나의 Coaxlink 보드만 필요하며 다중화 부속품을 필요하지 않습니다. 또한 PC를 서로 가깝게 배치하거나 최대 40m까지 거리를 둘 수 있습니다. 즉, 추가 부속품 비용이 발생하지 않으며, 40m 거리까지 유연하게 PC와 장비를 설치할 수 있으므로 시스템 비용을 줄일 수 있습니다. 3 Coaxlink Quad CXP-12 DF 프레임 그래버 산업 어플리케이션 Coaxlink Quad CXP-12 DF 보드는 주로 한 줄씩 이미지를 촬영하는 Line scan 카메라 어플리케이션(포장지, 인쇄, 금속 스트립)에 사용됩니다. 예를 들어 Line scan 카메라에서 매우 큰 이미지를 촬상해야 할 경우 매우 큰 이미지를 여러 부분으로 나누어 검사하는 것이 효과적입니다. 즉, Coaxlink Quad CXP-12 DF 보드를 사용하여 데이터를 여러 PC에서 동시에 처리할 수 있습니다. 이 방법은 택타임(Tack Time)도 줄이고 PC의 부하율도 줄입니다. 택타임(Tack Time): 요구하는 생산 목표를 달성하기 위해 제품 하나를 생산하는데 필요한 시간 Euresys Coaxlink Quad CXP-12 DF 어플리케이션 Euresys의 Coaxlink Quad CXP-12 DF는 검사 속도를 높이고 생산성을 향상합니다. Euresys 프레임그래버에 대해 더 궁금하시다면 화인스텍으로 문의 주세요!
2024.08.23Teledyne FLIR는 머신 비전과 비즈니스 응용 분야를 위한 카메라 솔루션의 선두주자로서, 업계를 선도하는 혁신적인 기술을 제공합니다. 특히 고해상도 열화상 카메라와 머신 비전 카메라에서 뛰어난 성능을 자랑합니다. Teledyne FLIR에서 새롭게 출시된 Dragonfly S 시리즈는 탁월한 해상도와 유연한 구성 옵션을 갖추어 생명 과학 기기부터 공장 자동화에 이르는 다양한 산업에서 신뢰받는 비전 솔루션으로 자리 잡을 것으로 기대됩니다. Teledyne FLIR는 이러한 최첨단 카메라 기술을 통해 시각적 데이터의 정확성과 효율성을 더 향상시키고 있습니다. Sony, Onsemi, Teledyne e2v의 CMOS 센서 옵션과 페어링 하는 Dragonfly S는 임베디드 및 핸드헬드 장치 애플리케이션을 포함한 다양한 용도에 적합한 머신비전 카메라입니다. * 임베디드 : 특정 기능을 수행하기 위해 기계나 장치에 내장된 컴퓨터 시스템 * 핸드헬드 : 장치는 사용자가 손에 들고 직접 조작할 수 있는 모바일 장비 < DRAGONFLY S Series 특징 > 1. 컴팩트하고 가벼운 디자인 핸드헬드 또는 임베디드 장치에 적합한 컴팩트하고 가벼운 디자인을 갖추고 있으며, 케이스형 모델은 Class B EMC 안전 기준을 준수합니다. * Board Level Size : 27mm x 27mm x 9.5mm Weight : 5 grams * Cased Size : 29.5mm x 29.5mm x 18.1mm Weight : 25 grams * Partial Cased Size : 29.5mm x 29.5mm x 17.5mm Weight : 17 grams Lens mount and USB locking bracket available as accessories 2. 다양한 렌즈 마운트 호환 가능한 모듈화 Dragonfly S 카메라는 이미지 애플리케이션 개발 초기 단계에서 필요한 모듈화된, 컴팩트하고 가벼운 카메라의 필요를 충족시키기 위해 설계되었습니다. 이 카메라는 대규모 제조, 대량 기반 애플리케이션 및 다중 카메라 시스템에 적합합니다. 3. 신뢰성 있는 이미지 전달 온보드 이미지 버퍼링* 기능 덕분에, 모든 이미지 프레임이 신뢰성 있게 호스트 CPU로 전송됩니다. 이를 통해 안정적인 이미지 전달을 보장합니다. * 온보드 이미지 버퍼링 : 내장된 메모리를 사용하여 이미지 데이터를 임시로 저장하는 기능 4. 비용 효율성 Dragonfly S 카메라는 모듈화된 설계와 유연한 구성 옵션을 통해 사용자 맞춤형 솔루션을 제공하며, 성능 최적화와 표준화된 부품 사용으로 비용 효율성을 극대화합니다. 이외에도 Dragonfly S 카메라는 다음과 같은 기능들이 있습니다. * 이미지 CRC(순환 중복 검사, Cyclic Redundancy Check) : 데이터 전송이나 저장 중 발생할 수 있는 오류를 감지하여 이미지의 무결성을 확인하는 방법 < DRAGONFLY S Series 적용 분야 > Teledyne Dragonfly S Series는 높은 성능과 유연성을 제공하여 전문적인 비디오 캡처 및 처리 요구에 적합한 솔루션입니다. 임베디드 및 핸드헬드 애플리케이션에 활용될 수 있습니다. 1. 검안경 [ Ophthalmoscopy ] Dragonfly S는 검안경 장비에 내장되어 고해상도 이미지를 통해 정밀한 안과 검사를 지원하며, 뛰어난 센서 성능으로 세밀한 눈 검사와 정확한 진단이 가능합니다. 또한, 핸드헬드 장치에 적용되어 진료 현장에서 실시간으로 고화질 이미지를 제공함으로써 검사의 효율성과 진단 정확도를 높입니다. 2. 생체 인식 키오스크 솔루션 [ Biometrics Kiosk Solutions ] Dragonfly S를 생체 인식 키오스크에 통합하면 지문, 얼굴, 홍채 인식 데이터를| 고해상도로 캡처하고 분석하여 보안성과 사용자 편의성을 높입니다. 또한, 이동형 장비에 적용 시 손쉽게 이동이 가능하면서도 신뢰성 있는 생체 인식 기능을 제공합니다. 3. 자동 광학 검사 (AOI) [ Automated Optical Inspection ] 자동 광학 검사 장비에 Dragonfly S를 내장하여 생산 공정에서 PCB, 반도체, 기타 부품의 결함을 자동으로 감지하고 분석할 수 있습니다. 이는 품질 보증과 결함 검출의 정확도를 높입니다. 작업자가 직접 장비를 들고 부품의 결함을 검사할 수 있는 장비로, 이동성과 유연성을 제공하며 현장에서 빠르게 결함을 식별하고 수정할 수 있습니다. 이 외에도 Dragonfly S 카메라는 모바일 로봇에 통합되어 환경 인식과 내비게이션을 지원하며 고해상도 이미지와 신뢰성 있는 데이터 전송 기능으로 자율적 작동과 장애물 회피를 돕습니다. 또한 3D 스캐닝 시스템에 Dragonfly S를 통합하면 고해상도의 3D 모델을 생성하여 산업 디자인, 품질 검사, 리버스 엔지니어링 등 다양한 분야에 활용됩니다. 마지막으로 비전 기반 모니터링 시스템에 통합되어 고정된 위치에서 지속적인 모니터링을 수행하며, 신뢰성 있는 이미지 전송과 분석 기능으로 시스템 상태를 효율적으로 관리합니다. 즉, 이동 중에도 실시간 모니터링과 데이터 수집이 가능해, 현장 작업 중 고해상도 이미지를 제공하고 문제를 조기에 발견할 수 있습니다. Dragonfly S는 다양한 센서와 카메라 기술을 지원하여, 위와 같이 다양한 애플리케이션에서 탁월한 성능과 효율성을 제공합니다. < SPECIFICATIONS > * DR-U3-50Y2M/C 기준 * 값은 비닝(binning) 모드와 비닝이 없는 모드 모두에서 동일합니다. < Modular Product Configuration > Chroma , USB Connectot, Lens Mount, Case or Bracket Dragonfly S 시리즈는 다양한 모듈화된 구성 옵션과 교체 가능한 렌즈 마운트를 제공하여 사용자의 필요에 맞게 조정할 수 있습니다. 또한, 내구성이 뛰어난 알루미늄 케이스와 내장형 히트 싱크로 안정적인 성능을 보장하며, 후면 및 측면의 USB 포트와 6핀 GPIO를 통해 유연하고 신뢰성 있는 연결을 지원합니다. Dragonfly S 시리즈는 핸드헬드, 임베디드, 그리고 멀티 카메라 시스템에 모두 적합한 뛰어난 성능을 제공합니다. 모듈화된 설계와 유연한 구성 옵션 덕분에 다양한 요구 사항에 맞춰 손쉽게 설치할 수 있으며, USB3 인터페이스를 통해 간편하게 연결하고 관리할 수 있습니다. 소형 및 경량화된 디자인으로 비용 효율성까지 갖추어, Dragonfly S Series는 다양한 산업 및 연구 분야에서 매우 실용적인 선택이 될 것입니다. Teledyne FLIR 사의 Dragonfly S Series에 대해 더 자세히 알고 싶거나, 제품 구매 및 상담을 원하신다면 화인스텍을 방문해주시기 바랍니다.
2024.08.19VS Technology Corporation의 VS-TLS(FR) 시리즈가 Vision Systems Design 2024 Innovators Awards에서 플래티넘 상을 수상했습니다 Vision Systems Design 2024 Innovators Awards에서 플래티넘 상을 수상한 것은 해당 제품이 글로벌 머신비전 분야에서 최고 수준의 혁신성과 성능을 갖추었음을 의미합니다. 이 상은 독창성과 혁신성, 업계에 미친 영향, 생산성 향상 등 다양한 기준에서 높은 평가를 받은 결과입니다. VS-TLS 시리즈는 이러한 높은 기준을 충족하며, 20가지 이상의 광학 배율을 자유롭게 조절할 수 있어 다양한 산업 환경에서 최적의 해상도와 시야각을 쉽게 구현합니다. VS-TLS(FR) 또한, 고해상도 카메라와 정밀 이미지 분석 소프트웨어와의 통합을 통해 검사 과정의 정확성과 효율성을 극대화하며, 자동화와 일관성 있는 검사를 통해 새로운 생산성과 품질 관리 기준을 제시합니다. 이러한 혁신적인 기능을 통해 VS-TLS 시리즈는 다양한 산업 환경에서 최적화된 솔루션을 제공하고, 검사 과정의 효율성을 극대화할 수 있습니다. 전 세계적으로 인정받는 조절 가능한 배율 조합의 텔레센트릭 렌즈 VS-TLS(FR) series VS Technology의 VS-TLS(FR) TELECENTRIC SERIES는 Fit-X 기술을 도입하여 전면 렌즈와 후면 렌즈를 조합하여 다양한 광학 배율을 제공하는 텔레센트릭 렌즈입니다. VST의 새로운 개념 렌즈는 전면 렌즈와 후면 렌즈를 두 부분으로 나누고 이를 -X-로 곱하여, 고객이 요구하는 다양한 광학 배율 -X-을 맞출 수 있습니다. < VS-TLS(FR) Series의 특징 > < 조절 가능한 FOV와 정확도 > VS-TLS(FR) 렌즈는 조절 가능한 시야각과 정확도를 제공하며, 프론트 렌즈 4개와 리어 렌즈 5개로 구성되어 20가지 이상의 배율을 설정할 수 있습니다. VS-TLS(FR) 렌즈를 통해 프론트와 리어를 자유롭게 재조립할 수 있습니다. VS-TLS(FR)의 프론트 렌즈를 교체하여 FOV(시야각)을 확장합니다. VS-TLS(FR)의 리어 렌즈를 교체하여 배율을 변화합니다. < X LOCK SYSTEM과 첨단 렌즈 커플링 기술 > VS-TLS(FR) 렌즈는 전방 및 후방 커플링 구조와 독특한 잠금 링 구성을 갖추고 있으며, 팔각형 마운트를 통해 정확한 체결 토크 관리와 견고한 렌즈 고정을 제공합니다 기존의 스크류 타입과 달리 표면에 단단히 고정되는 구조로 정확한 렌즈 체결을 보장합니다. < Function Ring > VS-TLS(FR) 렌즈의 Function Ring은 렌즈를 지지하는 플레이트를 부착하기 위해 특별히 설계된 기술입니다. 이 기술은, 지그*가 렌즈 본체에 직접 고정되지 않아 성능에 미치는 영향을 최소화합니다. 이 링은 렌즈를 돌려서 고정 플레이트와 카메라의 위치를 미리 조정할 수 있어, 렌즈를 부착하거나 제거할 때 미세 조정을 용이하게 해 제품의 효율성을 향상시킵니다. 지그(Jig): 기계가공 시 가공 위치 보정을 해주는 보조용 기구. 때로는 그냥 보조용 기구 < 20가지의 Line up으로 다양한 광학 배율 설계 > 아래 이미지처럼 프론트 렌즈 4개와 리어 렌즈 5개를 통해 조합되는 20가지의 라인업을 살펴보시길 바랍니다. VS-TLS(FR) 렌즈 라인업 검사 대상의 이미지를 카메라 센서에 초점을 맞추기 위해서 렌즈는 모든 이미징 시스템의 필수 구성 요소입니다. 시차 또는 원근 오류를 제거하거나 조정 가능한 배율, 시야 또는 초점 거리를 제공하는 데 사용할 수 있기 때문입니다. VS-TLS(FR) 렌즈는 이러한 필수적인 기능들을 넘어서, 시야 및 작업 거리(WD)를 변경하지 않으면서 광학 배율(픽셀 해상도)을 증가시킬 수 있는 독특한 기능을 제공합니다. 이를 통해 사용자는 다양한 산업 환경에서 최적화된 솔루션을 찾을 수 있으며, 검사 대상의 세밀한 조정과 높은 픽셀 해상도를 동시에 실현할 수 있습니다. VS-TLS(FR) 렌즈의 자세한 내용은 화인스텍 홈페이지를 통해 알아보세요!
2024.08.12BGA(Ball Grid Array)는 전자기기에서 널리 사용되는 반도체 패키징 기술 중 하나입니다. BGA는 격자 모양으로 솔더가 부착되어 높은 연결 밀도와 열 방출 효율을 제공하며, 패키지 크기로 인해 현대의 고성능, 고밀도 전자기기에 사용됩니다. BGA는 납땜 공정과정에서 부착된 솔더 볼의 열(Array)이 정확하고 일정하며 고르게 부착되어야 합니다. BGA의 솔더 볼은 패키지의 전기적 및 기계적 연결을 제공해야 하기 때문에 불량이 일어날 경우 전자기기의 기능 저하시키며 잦은 고장과 오류를 초래할 수 있습니다. 이는 특히, 고속 데이터 전송이 필요한 어플리케이션에 치명적일 수 있습니다. 그러므로 제조 과정에서 BGA 검사를 통해 솔더 볼의 정확한 배열과 부착상태를 확인하여 전자기기의 선능을 보장해야 합니다. AT(Automation Technology)사에서 출시한 XCS 시리즈는 이러한 볼 그리드 어레이(BGA) 검사의 정밀도 측면에서 뛰어난 검사 혁신 솔루션을 제공합니다. AT – Automation Technology Automation Technology는 맞춤형 3D 특수 이미징 센서 기술을 전문으로 하는 선도적인 글로벌 기술 기업입니다. AT는 지능형 적외선 카메라, 고정밀 3D 센서를 개발하고 제조해왔습니다. AT(Automation Technology)사에서 2024년 고정밀 검사를 위해 출시한 신규 라인업 XCS 는 기존 3D 센서 C6 시리즈에서 새로 추가된 시리즈로 정밀성, 신뢰성 및 반복성이 요구되는 고성능 산업용 어플리케이션을 위한 고정밀 3D 센서 시리즈입니다. Automation Technology C6 센서 시리즈 Automation Technology 의 3D C6 시리즈는 GigE Vision/GenICam 3D를 1Gbit/s로 지원하는 센서 플랫폼을 기반으로 제작되었습니다. C6 레이저 시리즈는 매우 빠르고 정밀한 해상도를 제공합니다. - Automation Technology XCS 시리즈 - Automation Technology XCS Model 레이저 라인 프로젝션(Projection): 레이저를 선 모양의 광원으로 물체의 표면에 투사하는 기술. 표면의 형상이나 결함을 정밀하게 측정하고 분석할 수 있음 xcs 시리즈 어플리케이션 XCS 시리즈는 균일한 두께를 유지하여 가장 작은 결함도 감지할 수 있는 최적화된 레이저입니다. XCS 3D 모델에 따라 XCS 3D 센서는 최대 140kHz의 프로파일(검사) 속도와 최대 53mm의 FOV를 제공합니다. 또한 선택 가능한 듀얼 헤드 옵션은 가림 현상(Occlusion,blind spots)을 제거하고 효율성을 높입니다. | 센서 모델 XCS 시리즈는 광삼각법 원리를 기반으로 작동하며 레이저 다이오드에서 방출된 빛이 물체에 투사되고 반사되어 센서로 돌아오는 정보를 바탕으로 물체의 깊이, 거리, 형상을 측정하는 3D 데이터를 생성합니다. 1 3070 WARP 센서로 가능한 가장 빠른 검사 속도 XCS 센서의 3070 WARP 버전은 최대 140kHz의 프로파일 속도를 달성하여 3D 스캔의 데이터 볼륨을 특히 빠르고 효율적으로 분석할 수 있습니다. WARP 센서는 Automation Technology사에서 자체 개발한 기술로 가장 빠른 3D 프로파일링을 제공하는 고성능 3D 센서입니다. 초고속의 프로파일 속도 Automation Technology의 WARP(Widely Advanced Rapid Profiling)* 기술로 최대 200kHz의 프로파일* 속도를 구현합니다. 이를 통해 빠른 생산 라인에서도 고속으로 데이터를 수집하고 처리합니다. 연관 데이터 전송 자체 개발한 센서 칩과 데이터 처리 덕분에 3D 스캔 중 필수 데이터만 전송하고 불필요한 데이터 전송을 줄여 효율성을 높입니다. 이 새로운 기술 덕분에 기존보다 최대 10배 더 높은 측정 속도를 구현합니다. 프로파일 (Profile): 센서가 특정 시간 동안 측정하거나 스캔할 수 있는 데이터 포인트 개수 의미. WARP는 Widely Advanced Rapid Profiling의 약자로, 레이저 센서의 데이터 수집 속도를 크게 향상시킵니다. 200kHz의 프로파일 속도는 레이저 센서가 1초에 200,000개의 단면을 캡처할 수 있다는 의미입니다. 즉, 200kHz 속도로 빠르게 데이터를 수집합니다. 3070W 센서에는 이미지의 모든 열에서 레이저의 반사를 찾아내, 레이저 반사가 일어난 위치 전후의 몇 픽셀 데이터만 읽어 들입니다. 이는 전체 이미지를 읽는 대신 특정 부분만 읽음으로써 속도를 높입니다. 즉, ROI(region of inspection, 검사 영역)의 모든 픽셀을 FPGA*로 전송하여 추가로 처리를 하는 대신, WARP기능으로 불필요한 데이터 전송을 줄이고 보다 효율적으로 실시간으로 데이터를 전송합니다. 2 듀얼헤드 옵션으로최대 140Khz 프로파일링 속도 달성 XCS 센서는 듀얼 헤드 옵션을 통해 가림 현상(Occlusion,blind spots)을 제거하고 초고속으로고해상도 3D 스캐닝 결과를 제공합니다. - 듀얼헤드, 두개의 센서가 주는 이점 - 1 폐쇄 제거 및 복잡한 형상 스캔 2 높은 해상도와 정밀도 제공? 3 속도 향상 두개의 센서를 사용하면 서로 다른 각도에서 데이터를 수집합니다. 이는 한쪽 센서에서 볼 수 없는 물체의 부분을 다른 한쪽에서 스캔하고 데이터를 수집하여 완전한 3D 모델링을 생성할 수 있습니다. 또한 두 개의 센서가 동시에 데이터를 수집하므로, 한 번의 스캔으로 더 많은 정보를 얻으며 한 개의 센서 보다 정밀한 데이터를 수집합니다. 즉, 해상도를 높이고 더 정밀한 3D 스캔 결과를 얻을 수 있습니다. XCS의 듀얼헤드 모델은 스캔 프로세스를 가속화하므로 고속 생산 라인에서 매우 유용합니다. 3 고품질 레이저 라인 프로젝션으로 높은 정밀도와 반복성 제공 일반적인 레이저 라인은 중심에서 가장자리로 갈수록 두께가 변할 수 있습니다. 그러나 XCS 센서는 레이저 프로젝터의 특수 광학 장치를 통하여 균일한 두께의 레이저 라인을 유지합니다. 다시 말해, XCS 시리즈는 두께 변화를 최소화하며 균일한 레이저 라인으로 전자 부품 같은 작은 구조도 높은 반복성과 정확도로 정밀하게 스캔합니다. 또한 Automation Technology사에서 자체 개발한 Clean Beam 기능을 통하여 여러 외부 간섭으로부터 레이저를 보호하여 레이저 빔이 매우 정밀하게 집중되도록 합니다. *외부 간섭 요인이란 주변 광원(예: 태양빛, 인공 조명), 다른 전자기 신호, 먼지나 연기 같은 공기 중 입자 등이 포함됩니다. 이러한 요인은 센서가 정확한 데이터를 얻는 데 방해가 될 수 있습니다. XCS의 Clean Beam 기능을 사용하면 레이저 광이 더 정확하게 물체에 닿고, 반사된 광이 센서로 돌아올 때 외부 간섭의 영향을 덜 받게 되어 스캔 결과의 신뢰성과 일관성을 높이게 합니다. Clean beam 기능은 듀얼헤드 옵션의 효과를 극대화 할 수 있습니다. 듀얼 헤드 옵션과 Clean beam 기능이 결합되면 외부 간섭 없이 레이저 빔의 균일한 강도를 집중시키며 동시에 가림 현상(Occlusion,blind spots) 없는 고유한 3D 스캔 결과를 제공합니다. 4 최대 53mm의 시야각으로 전자 검사(BGA 검사 등)에서 탁월한 광학 해상도 제공 XCS 센서는 최대 2.08인치(53mm)의 매우 작은 Fov를 가집니다. XCS 시리즈의 4090 모델일 경우 53mm FOV, 프로파일당 4096픽셀, 최대 20.3Kh 프로파일 속도를 제공합니다. Optical Setup 4090 XCS 모델을 통해 작은 FOV로 얻게 되는 이점은 반복성이 높고 정확도가 뛰어난 검사 어플리케이션을 개발할 수 있다는 것입니다. 이는 전자부품 검사, 전자 어셈블리 검사, 커넥터 핀 검사 등에 최적화된 솔루션입니다. xcs 시리즈 어플리케이션 5 BGA 검사와 같이 작고 정밀한 검사에 적합한 XCS 3D 센서 지금까지의 모든 기능들을 바탕으로 XCS는 볼 그리드 어레이(BGA) 외관 검사를 통해 BGA의 다양한 불량 유형 검사를 매우 정밀하고 균일하게 진행할 수 있습니다. - XCS 3D 센서 시리즈의 외관 검사에 적합한 BGA의 주요 불량 유형 - 위 내용의 불량 검출 유형을 바탕으로 XCS 센서는 BGA에 부착된 솔더볼의 높낮이를 정밀하게 스캔하여 불량 유형을 검출할 수 있습니다. 예를 들어 듀얼 헤드 옵션으로 다양한 각도에서 솔더볼을 스캔하여 폐색 없는 정확한 3D 이미지를 생성합니다. Clean Beam 기능으로 균일한 레이저 라인을 제공하여 스캔의 정밀도와 반복성을 보장합니다. 마지막으로 3070 WARP 센서로 최대 140kHz의 프로파일링 속도로 빠르게 3D 데이터를 생성하여 공정에서의 택타임*을 효율적으로 관리하며 불량 유형 검사를 진행합니다. *택타임(Tact time): 정해진 작업 시간 안에 고객이 요구하는 제품 수량을 생산하는 데 걸리는 시간 Automation Technology사의 XCS의 더 자세한 내용이 알고 싶으시다면 화인스텍에게 문의주세요!
2024.08.12타이어는 차량의 안전성과 성능에서 핵심적인 역할을 하며, 제조 과정에서의 품질 관리가 필수적입니다. 이 과정에서 산업용 3D 스캐닝 기술은 일관된 기준으로 타이어를 검사하여 결과의 신뢰성을 높이고 체계적인 품질 관리를 지원합니다. 3D 카메라를 통한 타이어 생산 공정에서의 검사는 정밀한 품질 관리, 불량 제품 식별, 생산 효율성 향상, 그리고 제조 표준 규격 준수에 필수적입니다. 특히, Photoneo의 PhoXi 3D Scanner는 타이어의 외관 검사, 내부 구조 검사, 균형 검사, 트레드 균일성 검사, 제조 공정 모니터링에서 뛰어난 성능을 발휘합니다. <머신비전 솔루션을 활용한 타이어 외관검사 어플리케이션> 이러한 타이어 검사의 높은 정밀성과 효율성을 구현하기 위해, 산업용 3D 스캐너가 제조 공정에서 필수적인 도구로 자리 잡고 있습니다. 화인스텍의 공식 파트너사 포토네오(Photoneo)의 PhoXi 3D 스캐너의 고해상도 3D 데이터 캡처와 빠른 스캔 속도는 타이어의 결함과 상태를 정밀하게 측정하고 분석하며, 다양한 환경에서도 안정적인 성능을 발휘하는 견고한 설계를 갖추고 있습니다. <타이어 외관 검사에 적합한 산업용 3D 스캐너_PhoXi 3D Scanner> 이러한 기술적 장점 덕분에 다양한 머신비전 기반 타이어 검사 기능이 효과적으로 구현될 수 있습니다. PhoXi 3D 스캐너는 3백만 개의 3D 포인트로 구성된 고해상도 데이터를 제공하며, 실시간으로 움직이는 물체를 정확하게 스캔하는 뛰어난 기능을 갖추고 있습니다. PhoXi 3D 스캐너를 실제 어플리케이션인 타이어 검사에 적용해 보았습니다. 다양한 타이어 검사 중 타이어 트레드의 깊이와 폭을 검사하였으며, 고정된 위치에서의 깊이 및 폭 측정에 집중해 보았습니다. * PhoXi 3D Scanner가 위에서 타이어를 스캔하는 모습 Photoneo 프로그램으로 확인할 수 있는 데이터 다양한 컬러 표현을 지원하는 Photoneo 프로그램을 사용하여, 스캔 된 데이터를 시각적으로 확인할 수 있습니다. Photoneo 프로그램은 파라미터 설정, 이미지 확인 및 저장 기능을 제공하여, 스캔 된 3D 데이터를 효과적으로 다룰 수 있도록 합니다. PhoXi 3D 스캐너로 캡처한 타이어의 3D 모델을 시각적으로 분석한 결과를 볼 수 있습니다. 화면에서 스캔 된 타이어의 트레드 깊이와 폭 측정을 통해 타이어의 세부 상태를 확인할 수 있습니다. 또한, 3D 스캔을 통해 얻은 데이터를 처리하여 포인트 클라우드를 생성하고 이를 바탕으로 3D 모델링을 수행한 결과를 확인할 수 있습니다. 아래 사진을 클릭해보세요! ↓↓↓↓↓↓↓↓↓ Phoxi 3D Scanner L size SPECIFICATIONS Photoneo PhoXi technical parameters PhoXi 3D 스캐너는 실시간으로 움직이는 물체를 정확히 스캔할 수 있는 기능 덕분에, 타이어 제조와 검사뿐만 아니라 아래와 같은 다양한 어플리케이션에 적용될 수 있습니다. *사진을 클릭하여 3D 모델링 결과를 확인해 보세요! 가장 작은 부품 검사 PhoXi 3D 스캐너 XS는 161~205mm의 스캔 범위 내에서 작은 물체를 높은 정밀도로 스캔할 수 있도록 설계되었습니다. 높은 정확도와 세부 수준을 제공하는 XS 모델은 물체와 재질 검사에 가장 적합한 선택입니다. 큰 물체 검사 PhoXi 3D 스캐너 XL은 1680~3780mm의 스캔 범위 내에서 매우 큰 물체를 스캔하는 데 적합합니다. 광택, 반사 또는 검정색 표면이 겹쳐져 있는 다양한 상자 종류가 적재된 화물의 디팔렛타이징과 같은 여러 응용 분야에서 사용할 수 있습니다. 정확한 유기물 인식 PhoXi 3D 스캐너는 식품 업계에서 과일, 야채 또는 생선과 같은 유기물 물체를 스캔할 때 사용할 수 있습니다. 가장 복잡한 물체도 척척 노이즈 필터링에 대한 고급 알고리즘 덕분에 PhoXi 3D 스캐너는 반짝이거나 반사되는 재질에서도 (톱니바퀴와 같은 금속 물체) 스캔하고 검사할 수 있습니다. 메디컬 케어 PhoXi 3D 스캐너는 인체 스캔과 같은 의료 산업에도 적용가능한 어플리케이션입니다. 상이한 표면 스캔을 한번에 PhoXi 3D 스캐너는 표면이 서로 다른 다양한 종류의 물체가 있는 복잡한 장면도 스캔 한 번으로 포인트 클라우드를 확보할 수 있습니다. PhoXi 3D 스캐너에 대해 더 자세히 알고 싶거나, 제품 구매 및 상담을 원하신다면, 화인스텍을 방문해 주시기 바랍니다.
2024.08.07안녕하세요. 화인스텍입니다. 머신비전은 카메라, 렌즈, 조명, 소프트웨어, 프레임그래버 등으로 구성된 시스템으로, 사람이 눈으로 보고 판단하는 작업을 빠르고 정밀하게 수행합니다. 이전 게시물에서는 머신비전 시스템의 구성 요소와 각각의 역할 및 중요성에 대해 알아보았었는데요 오늘은 머신비전에서 자주 사용하는 용어들에 대해 알아보겠습니다. A부터Z까지, 화인스텍과 함께 머신비전 용어의 세계로 들어가 보시죠! AI [Artificial Intelligence, 인공지능] 인간의 지적 능력을 컴퓨터로 구현하는 과학 기술 상황을 인지하고 이성적·논리적으로 판단·행동하며, 감성적·창의적인 기능을 수행하는 능력까지 포함 Airy Disk and Resolving Power Airy Disk : 렌즈에서 얻을 수 있는 가장 작은 지점 Resolving Power : 서로 가까이 있는 두 지점을 분해하는 기기의 능력 * 수치가 없는 이상적인 렌즈라도 물체의 세부 사항을 재현할 수 없습니다. 회절은 가능한 해상도를 제한합니다. 스폿의 반경 r은 파장 λ(빛 파장)와 개구수 NA에 의해 주어집니다. r = 0.61λ / NA , r = 에어리 디스크의 반경 = 분해능 * 조명광의 파장이 길수록 스폿이 더 커집니다. Area Scan [에어리어 스캔] 이미지 센서가 2차원 배열로 이루어진 센서 고속 이미지 캡처와 정밀한 해상도 제공하며, 정지된 물체뿐만 아니라 움직이는 물체도 캡처할 수 있어 다양한 애플리케이션에 적합 렌즈를 통해 빛이 이미지 센서에 집중되고, 각 픽셀이 빛의 강도를 전기 신호로 변환한 후 디지털 데이터로 처리되는 원리 Bayer Sensor RGB 컬러 필터를 사각형의 광센서 그리드에 배열하기 위한 컬러 필터 어레이(CFA) 디지털카메라와 이미지 센서에서 널리 사용. 적은 수의 센서로 색상 이미지를 생성할 수 있어 효율적이고, 구조가 간단합니다. bayer Sensor의 작동 원리 1. 배열의 적용: 베이어 필터 배열은 전체 센서 그리드에 반복되어 적용 2. 빛의 감지: 각 픽셀은 RGB(빨강, 녹색, 파랑) 중 하나의 색상을 감지 3. 데이터 수집: 각 픽셀이 감지한 특정 색상의 빛 정보를 수집 4. 디모자이킹: 수집된 데이터를 통해 디모자이킹(demosaicing) 과정을 거쳐 전체 이미지의 색상을 재구성 * 디모자이킹(demosaicing)은 디지털 이미징에서 사용되는 과정으로, Bayer 필터 배열과 같은 컬러 필터 배열(CFA)을 사용하여 이미지를 촬영할 때 수집된 데이터를 완전한 컬러 이미지로 변환하는 것 출처 : Wikipedia® Binning [비닝] 이미지 센서의 여러 픽셀을 그룹으로 묶어 단일 픽셀처럼 처리하는 기술 여러 픽셀의 빛을 합쳐 감도를 향상시키고, 신호 대 잡음비(SNR)를 개선하며, 해상도를 낮춰 데이터 처리 속도를 증가 특히 저조도 환경과 실시간 처리가 필요한 머신 비전 애플리케이션에서 유용 일반적인 비닝 방법은 2x2 binning: 2x2 픽셀 그룹을 하나의 픽셀로 합칩니다. 해상도는 원래 해상도의 1/4로 감소 3x3 binning: 3x3 픽셀 그룹을 하나의 픽셀로 합칩니다. 해상도는 원래 해상도의 1/9로 감소 Blooming [블루밍] 이미지의 픽셀 집합이 밝은 점(태양, 빛, 레이저)에 의해 과포화 되어 해당 픽셀에 포함된 전하가 인접한 픽셀로 넘쳐 밝은 점이 방사형 패턴으로 "번지는" 현상 Camera mount 카메라 바디와 렌즈를 연결하는 장치 각 카메라 마운트는 다양한 사이즈의 쓰레드와 플랜지 백을 갖추고 있음 *FB : 센서에서 카메라 플랜지까지의 거리 *1 FB 사이즈는 카메라 제조업체에 따라 다양합니다. 정확한 영상 촬영을 위해서는 올바른 마운트 쓰레드와 FB의 확인이 필요합니다. Camera Link 산업 비디오 제품의 표준화를 위해 설계된 인터페이스 Camera Link 인터페이스는 AIA(Automated Imaging Association)에 의해 유지 및 관리되며, 높은 안전성으로 가장 널리 사용되고 있는 인터페이스 중 하나 데이터 전송 속도 * Base : 1,2,3 Tap (최대 255MB/s) * Medium/Full : 4,6,8 Tap (최대 680MB/s) * DECA : 10 Tap (850MB/s) CCD Sensor / CMOS Senseor CCD Sensor (Charge Coupled Device) 전자결합자 빛을 전하로 변환시켜 화상을 얻어내는 센서 높은 감도와 낮은 노이즈로 뛰어난 이미지 품질을 제공하며, 저조도 환경에서도 우수한 성능을 발휘 상대적으로 높은 전력 소비와 생산 비용, 느린 데이터 전송 속도로 인해 실시간 처리에는 제한 출력 구조상 포화한 빛 전송 시 스미어 현상이 발생. CMOS Sensor (Complementary Metal-Oxide-Semiconductor) 받아들인 빛을 전기신호로 변환하여 이미지를 생성하는 이미지 센서 낮은 전력 소비와 저비용 생산이 가능하며, 고속 데이터 처리로 실시간 영상 촬영에 유리 CCD에 비해 가격이 저렴하며, 감도가 낮고 노이즈가 높은 편. 각 픽셀 별 감도 차이가 있어 FPN(Fixed Pattern Nosie)이 발생. *스미어 현상 : 스미어 현상은 화상 왜곡의 하나로서, 화소의 수광부 이외로의 빛의 누설, 신호 전자의 불완전한 이동 등에 의해 화면의 밝은 부분에 상하로 밝은 선이 보이는 현상 CMM (Coordinate Measuring Machine) 프로브(Probe) 센서가 물체에 직접 닿아 측정하는 방식 정밀하고 신뢰성 있는 데이터를 얻을 수 있지만, 물체의 민감도에 따라 변형, 손상이 있을 수 있음. Confocal [공초점 기술] 이미지의 초점 깊이를 정밀하게 조절하여 고해상도 이미지를 생성하는 기술로 빛의 파장대 별로 초점이 다른 원리를 이용하여, 물체 표면에 따라 높이 데이터를 취득하는 방식. 물체의 표면 높이뿐만 아니라 불투명 재질의 경우 두께 측정도 가능 Contrast [명암 대비] 이미지에서 어두운 부분과 밝은 부분 사이 차이 높은 대비는 밝은 부분과 어두운 부분 사이의 차이가 크다는 것을 의미하며, 낮은 대비는 그 차이가 작다는 것을 의미 <명암 대비의 양 차이> 출처 : Wikipedia® Chromatic Aberration [색수차] 빛의 파장에 따라 상이 맺히는 위치가 어긋나 색이 번져서 상이 흐려지는 현상 일반적으로 단일 렌즈는 모두 색수차가 있으므로, 광학기계에 사용되는 렌즈는 단일 렌즈를 몇 개 결합하여 각각의 용도에 따라 색수차를 감소 출처 : Wikipedia® CXP (CoaXPress) JIIA에서 제정한 표준 고속 이미지 전송을 위한 인터페이스 길이가 긴 케이블을 사용할 수 있음. 초고속 라인 스캔 카메라의 트리거링에 적합하며 신호 지연이 아주 짧음. * JIIA : Japan Industrial Imaging Association 데이터 전송 속도 / 최대 길이 * CXP-1 : 1.25 Gb/s, 212m * CXP-2 : 2.5 Gb/s, 185m * CXP-3 : 3.125 Gb/s, 169m * CXP-5 : 5 Gb/s, 102m * CXP-6 : 6.25 Gb/s, 60m * CXP-10 : 10 Gb/s, 40m * CXP-12 : 12.5 Gb/s, 30m Distortion [왜곡] 렌즈의 중심과 외각의 굴절률 차이로 인해 이미지의 중심과 외곽 부분에 차이가 나는 현상 Distortion Deep Learning [딥러닝] 컴퓨터가 스스로 외부 데이터를 조합, 분석하여 학습하는 기술 딥러닝에 기반한 머신비전 시스템은 복잡한 패턴 인식과 정확한 데이터 분석을 가능하게 하며, 규칙 기반 시스템으로는 어려운 객체 검출, 이미지 분류, 세그멘테이션 등을 높은 정확도로 수행합니다. 이를 통해 자동화 공정의 효율성을 극대화하고, 새로운 응용 분야에서 혁신적인 솔루션을 제공합니다. Digital Camera [디지털 카메라] 광학 이미지를 전자 신호로 변환하여 디지털 형식으로 저장하고 처리하는 장치 CCD나 CMOS 센서를 사용하며, A/D 변환기를 통해 신호를 디지털화하여 노이즈를 최소화 높은 해상도의 이미지를 제공하며, 다양한 파일 형식(JPEG, RAW 등)으로 이미지를 저장할 수 있어 후처리가 용이합니다. Depth Of Field [DOF, 피사계 심도] 영상의 초점이 선명하게 맺혀지는 피사체 거리의 범위 * 초점 심도 : 촬상 측 (센서 측) 거리를 나타내는 파라미터 * 허용 착락원(or 허용 COC) : 허용되는 흐림의 정도 * 심도 : 영상 평면에 초점이 맞추어졌을 때 광선속의 최소 직경 DSP (Digital signal Processor) 디지털 신호를 기계장치가 빠르게 처리할 수 있도록 하는 집적회로 DSP는 아날로그 신호를 디지털로 바꿔 고속 처리해 주는 기능을 하기 때문에 복잡한 신호처리를 요구하는 멀티미디어 기기나 디지털 통신기기 등에 폭넓게 응용 Exposure Time 카메라 센서가 빛을 받아들이는 시간이며, 시간이 짧으면 어두운 이미지, 길면 밝은 이미지를 얻을 수 있음. F Number (F/#) 무한 이미징 렌즈의 밝기 초점 거리를 빛이 들어오는 영역의 직경으로 나눈 값으로, 값이 작을수록 이미지가 밝아짐. FireWire (IEEE 1394) PC 등에 주변 기기를 접속하기 위하여 사용하는 인터페이스 규격 중의 하나 IEEE는 단자 이름이 아니라 전기 전자 기술자 협회(Institute of Electrical and Electronics Engineers)의 약자 FireWire 인터페이스 카메라는 IEEE 1394 데이터 전송 기술로 이미지 데이터를 전송하는 방식. * IEEE1394는 IEEE에서 규정한 인터페이스 규격 전송 속도 * IEEE 1394a: 400Mb/s * IEEE 1394b: 800Mb/s Focal Length [초점거리] 렌즈의 중심에서 렌즈가 수집한 빛이 모여 초점을 형성하는 지점까지의 거리 * 렌즈의 광축과 이미지 센서(또는 필름) 사이의 거리로 표현 FOV (Field of View) 렌즈를 통해 이미지 센서에 들어온 시야 사이즈 즉, 렌즈를 통해서 사진기가 이미지를 담을 수 있는 각 넓은 시야각은 넓은 범위의 장면을 한 번에 포착할 수 있지만 해상도가 떨어질 수 있는 반면, 좁은 시야각은 세밀한 부분을 확대하여 더 높은 해상도로 촬영 가능 측정 방법 각도 단위로 측정된 시야각 수평 시야각 (Horizontal FOV): 카메라나 렌즈가 수평 방향으로 포착할 수 있는 장면의 각도 수직 시야각 (Vertical FOV): 카메라나 렌즈가 수직 방향으로 포착할 수 있는 장면의 각도 대각선 시야각 (Diagonal FOV): 카메라의 센서 또는 렌즈의 대각선 방향으로 포착할 수 있는 장면의 각도 거리 단위로 측정된 시야각 시야 폭 (Field of View Width): 특정 거리에서 카메라가 포착하는 장면의 폭 시야 높이 (Field of View Height): 특정 거리에서 카메라가 포착하는 장면의 높이 * 출처 : Wikipedia® * Opt Mag : 광학배율 (실제 물체 크기와 이미지 센서에 맺히는 물체 크기와의 비율) FPS (frame per second) 초당 찍히는 프레임의 수 FPS가 높을수록 부드러운 영상을 얻을 수 있음. Frame rate 단위 초당 화면을 바꾸는 횟수 횟수가 많을수록 화면의 흔들림을 적게 느낌. FFC (Flat Field Correction) 균일하지 않은 이미지를 균일한 이미지로 보정해 주는 기능 Gain [게인] 전자 기기의 출력과 입력의 레벨비 Gamma correction [감마 보정] 이미지의 밝기와 대비를 조정하여 사람이 더 잘 인식할 수 있도록 하는 과정 이미지의 픽셀 값에 감마 값(γ)을 사용하여 비선형적으로 적용 감마 값(γ)이 1보다 작으면 이미지가 밝아지고, 1보다 크면 어두워짐. * Vin 은 원본 픽셀 값(0과 1 사이)이며, Vout 은 보정된 픽셀 값 GigE Vision GigEVision 인터페이스는 기가 바트 이더넷 통신 프로토콜을 사용하여 개발된 카메라 인터페이스 표준 10GigE Vision -> 속도가 10배 빨라진 것 데이터 전송 속도 * GigE : 1Gb/s * 10GigE : 10Gb/s Infrared light [적외선] 태양이 방출하는 빛을 프리즘으로 분산시켜 보았을 때 적색 선의 끝보다 더 바깥쪽에 있는 전자기파 가시광선보다 파장이 길고 마이크로파보다는 파장이 짧음 * 파장의 길이에 따라 분류하면 파장 0.75∼3㎛의 적외선을 근적외선, 3∼25㎛의 것을 적외선, 25㎛ 이상의 것을 원적외선 Interlaced Scan [비월주사] TV Format에서 사용되며 이미지 데이터의 홀수, 짝수를 번갈아 가며 전송하는 방식 비월주사는 홀수 또는 짝수 필드를 60Hz로 전송하기 때문에 실제로 사람의 눈에는 인식되지 않음. * Field(필드) : 홀수만 또는 짝수만 구성되는 이미지, Frame(프레임) : 이미지 전체 Image Processing [이미지 처리] 카메라나 센서로부터 획득한 이미지를 분석하고, 유의미한 정보를 추출하는 과정 자동화된 시스템에서 사람의 개입 없이 정확하고 신뢰할 수 있는 데이터를 제공하여 효율성 향상 이를 통해 오류를 줄이고, 품질을 향상시키며, 비용 절감 가능 이미지 처리 단계 1. 이미지 획득 (Image Acquisition) : 카메라나 기타 센서를 통해 이미지를 수집 2. 이미지 전처리 (Image Preprocessing) : 수집된 이미지의 품질을 향상시키고, 분석에 적합하게 만드는 과정 3. 특징 추출 (Feature Extraction) : 이미지에서 중요한 정보를 뽑아내는 과정 4. 객체 인식 및 분석 (Object Recognition and Analysis) : 추출된 특징을 기반으로 객체를 인식하고 분류 5. 결과 해석 및 응용 (Interpretation and Application) : 분석된 정보를 해석하여 의사 결정 Light spectrum 사람이나 기기에 의해 "빛"으로 인식되는 전자기 스펙트럼 내의 파장 범위 Liquid Lens 액체의 물리적 특성을 이용하여 렌즈의 초점 거리를 조절하는 광학 기기 일반적인 렌즈는 유리 재질로 되어 있지만 Liquid Lens는 액체 소재로 되어 있으며, 전기적 신호를 받아 형태를 바꾸어 DOF를 극복하거나 초점 거리 변경 가능 * Zoom Lens의 경우 모터를 없애고 Liquid Lens와 결합해 간편하게 제어가 가능 <좌> Liquid Lens 구성도 <우> 구동 방식 LWD (Lighting Working Distance) 조명 끝 단부터 물체 표면까지의 거리 Mash 3D Point Cloud Data 점들을 연결하여 3D 표현으로 만드는 표현 방식 그물망처럼 점을 이어 표현하는 방식 Machine Learning [ML, 머신러닝] 머신 러닝은 경험적 데이터를 기반으로 학습을 하고 예측을 수행하고 스스로의 성능을 향상시키는 시스템과 이를 위한 알고리즘을 연구하고 구축하는 기술 MOD (Minimum Object Distance) 초점을 맞추기 위한 렌즈와 물체의 최소 거리 MTF (Modulation Transfer Function) 공간 주파수 및 명암비 측면에서 물체 표면의 음영 반복이 이미지 측면에서 어떻게 나타나는지를 표현하는 각 공간 주파수의 명암 특성 즉, MTF는 렌즈의 이미징 성능과 물체의 콘트라스트를 이미지로 얼마나 완벽하게 재현할 수 있는지 확인하는 기준 *콘트라스트 성능은 특정 공간 주파수와 동일한 간격의 흑백 테스트 패턴을 사용 Near infrared light [근적외선] 적외선 중에서 파장이 짧아서 가시광선에 가까운 영역 보통 780nm - 2500nm(2.5μm) 영역 Numerical Aperture [NA, 개구수] 렌즈가 빛을 어느 정도 받아들이는지의 척도 NA = n · sin θ * n은 특정 매개체에서 렌즈의 굴절률(공기: 1.0)을 의미, θ는 빛이 들어오는 반각을 의미 Optical Magnification [광학 배율] 실제 물체 크기와 이미지 센서에 맺히는 물체 크기와의 비율 OI (Object to Imager) 물체에서부터 카메라 센서까지의 거리 PCD (Point Cloud Data) 스캔 된 객체를 나타내는 3D 점 좌표의 집합 각 점은 X, Y, Z 좌표를 가지고 있으며, 점의 위치는 3D 공간에서의 정확한 위치 3D 공간을 세밀하게 표현할 수 있으며, 색상과 강도 등의 추가 정보를 포함해 점의 속성을 자세히 이해 가능 * 3D Processing에 사용 출처 : Wikipedia® Pixel [픽셀] 디지털 이미지에서 하나의 작은 사각형 또는 점으로, 이미지의 전체를 구성하는 기본 단위 (=화소) 각 픽셀은 특정 색상과 밝기 정보를 가지고 있으며, 이 정보가 모여 전체 이미지가 형성 출처 : Wikipedia® Pixel Size [픽셀 사이즈] 화소의 길이와 폭 일반적으로 픽셀의 가로와 세로의 물리적 길이를 밀리미터(mm) 또는 마이크로미터(µm) 단위로 측정 Pixel Resolution [픽셀 해상도] 하나의 픽셀 이미지에 담겨 있는 비트 수 Ex) 1920x1080 픽셀 해상도는 1920개의 수평 픽셀과 1080개의 수직 픽셀로 구성된 이미지를 의미 * Megapixel : 100만을 뜻하는 MEGA와 디지털 사진의 최소 단위인 화소(PIXEL)를 결합한 용어 ROI (=AOI) ROI는 센서의 일부 영역만 전송할 수 있는 기능 아래 이미지 같이 필요한 부분만 전송하기 때문에 이미지 전처리 효과 및 촬상 속도 향상 가능 * 여러 영역을 지정하여 전송하는 기능은 Multi ROI Shutter type Rolling Shutter 센서 구조가 간단해 합리적인 가격의 장점이 있으나 센서의 세로 방향으로 순차적으로 노출을 하게 되어 움직이는 물체에는 왜곡(젤로 현상)이 발생. 정지된 물체를 촬상 하는 것에 적합 Global Reset Rolling Shutter의 추가 옵션으로 Rolling Shutter 센서로 정지된 물체를 촬영할 수 있도록 설정을 하는 것이며, 이미지의 세로 방향으로 밝기 편차가 발생 가능 Global Shutter 센서 전체가 동시에 노출을 하게 되어 움직이는 물체를 왜곡 없이 촬상 가능 Shutter type Signal-to-noise ratio [SNR, 신호 대 잡음비] Singal(신호)와 Nosie(잡음)의 상관관계를 나타내며, 이미지 품질을 평가할 수 있는 요소 높은 SNR 값은 신호가 잡음에 비해 상대적으로 강하다는 것을 의미. 즉, 신호의 품질이 좋다는 것 * SNR은 보통 데시벨(dB) 단위로 표현 SNR 수식 Sensor size 디지털카메라나 이미지 센서에서 광학 이미지를 수집하는 센서의 물리적 크기를 의미 Sensor size 공식 Structured Light [구조광] 프로젝터와 같은 광원을 이용하여 물체에 패턴을 투영하는 방식 패턴을 미세하게 움직이며 여러 이미지를 취득해야 하므로, 대상 물체는 정지해 있어야 함. 물체 표면에 투영된 패턴을 분석해 3D 형상을 재구성 Type of Machine Vision Lenses ToF (Time of Flight) 빛을 내는 발광부와 빛을 감지하는 수광부가 한 쌍을 이루는 구조 물체에 반사된 빛이 되돌아오는 시간(또는 위상차)에 따라 거리를 유추하는 방식. USB 인터페이스 USB 2.0 산업용에서 사용되기 위해 지정된 특정 프로토콜이 없음. USB 3.0 / USB3 Vision USB 2.0과 마찬가지로 Plug & Play를 완벽히 지원 * USB 3.0에서 3.1로 확장, USB 기술이 발전하면서 AIA에서 이 인터페이스를 USB3 Vision 표준으로 정의 Vignetting [비네팅] 사진 및 광학에서 화상의 중심부에 비해 주변부로 갈수록 화상의 명도 또는 채도가 감소하는 현상 * 이미지 센서 크기와 맞지 않는 경우에도 발생 출처 : Wikipedia® WD (Working Distance) 렌즈 끝 단부터 물체 표면까지의 거리 Working F/# (W.F/#) 유한 이미징 렌즈의 밝기를 정의 * W.F / 과 F/#의 관계 머신비전 카메라 인터페이스의 종류와 특징 오늘은 머신 비전 기본 구성 요소에 이어 머신 비전과 관련된 약 50여 가지 용어에 대해 알아보았습니다. 이 포스팅을 통해 다양한 용어들을 이해하는 데 도움이 되셨기를 바랍니다. 앞으로도 계속해서 유용한 정보를 제공해 드릴 수 있도록 노력하겠습니다 :) 머신 비전에 대해 궁금한 점이나 추가로 알고 싶은 내용이 있다면, 언제든지 저희 화인스텍을 방문해 주세요.
2024.08.021. 머신비전 시스템에서 조명의 역할 및 중요성 비전 검사에서 조명의 역할은 큰 비중을 차지하고 있습니다. 정확한 이미지 분석을 위해서는 머신비전의 조명의 역할이 중요하게 작용합니다. 머신비전 검사에 있어 정확성이 높은 이미징(이미지 처리) 검사를 시행하기 위해서는 선명한 이미지를 취득하는 것이 필수입니다. 머신비전 조명은 검사하고자 하는 영역을 균일하게 조사(照射)하여 선명한 이미지를 제공합니다. 선명한 이미지는 검사하고자 하는 비전 시스템의 알고리즘을 더욱 견고하게 만들어 오차를 줄이고, 더욱 정확한 결과를 얻는 데 도움을 줍니다. 머신비전 조명의 중요성 [머신비전 조명의 중요성] "산업에서 최적화된 머신비전 조명 선정은 여러가지 이점을 갖습니다" 이처럼 머신비전에서 조명이 주는 다양한 이점들이 있지만, 그중 선명한 이미지 취득에 있어 가장 중요한 포인트는 ‘대비’입니다. 선명한 대비를 가진 이미지는 긁힘, 형태 구조 인식, 식별 등 검사하고자 하는 영역을 뚜렷하게 부각하여 수월한 비전 검사 알고리즘을 만듭니다. 위의 이미지에서 알 수 있듯이 조명이 균일하게 조사되지 않아 선명한 대비도를 얻지 못한 이미지는 검사 알고리즘에 어려움을 줍니다. 즉, 균일한 조명을 통하여 대비도가 높은 이미지를 얻게 되면 검사 알고리즘을 수월하게 진행하여 이미지 검사를 더욱 빠르고 효율적으로 진행합니다. 2. 머신비전 조명 종류 | 머신비전 조명의 종류 | 다양한 산업에서 우리가 원하는 이미지를 취득하기 위해서는 어플리케이션에 최적화된 조명을 선정해야 합니다. 조명은 그 특성에 따라 다음과 같이 나눠집니다. image source: LVS, REVOX 다음은 자주 사용되는 대표적인 9종류의 머신비전 조명의 특징입니다. 이처럼 다양한 조명 종류는 각각의 특성과 장점을 가지고 있어, 검사 대상 물체와 목에 따라 적절히 선택되어야 합니다. 일반적으로 조명은 조명 컨트롤러와 함께 사용됩니다. 조명 컨트롤러의 I/O를 사용하여 어플리케이션에 적합할 수 있도록 조명을 제어합니다. I/O* 입출력(input/output) 3. 어플리케이션 별 적절한 조명 선택 머신비전이 일관되고 안정적이게 수행되기 위해서는 해당 어플리케이션에 적합한 조명 구성 요소를 선택하는 것이 중요합니다. 머신비전 조명의 타입은 조명이 물체 도달하는 방식으로 주로 직사광, 면발광, 백라이트, 돔형, 동축조명 등이 있으며 그외 다양한 타입이 있습니다. [머신비전 조명의 타입] 이처럼 조명의 타입을 통해서 특정 형태나 기술을 기반으로 조명을 분류하고 있습니다. 다음 각 어플리케이션에 적합한 조명의 용도와 특징을 확인해보세요. 링조명 (직사광) 용도: 침부품 검사, 프린트 기판의 위치결정, 플라스틱 용기의 검사 라벨검사, IC 날인 검사 특징: 고휘도 led 표준 타입으로, 폭넓은 용도로 사용이 가능 링조명 로우 앵글 (직사광) 용도: BGA의 납땜 볼 위치 / 형상 / 면적검사, 레이져 각인 판독, 웨이퍼 유리 기판의 흠집, 오염 등의 검사 특징: Low-Angle 조사로 인한 엣지 및 흠집검사에 최적 – 깔대기형의 확산판 사용가능 바조명 (직사광) 용도: LED 결함검사, 복잡한 형강 인식, 완성품의 크랙검사, QFP/SOP 검사, 금속판 표면검사 특징: 초 고휘도 LED를 고밀도로 배치, 액정 문자의 검사나 라벨 등의 검사에 최적인 조명 돔형 다단조명 (직사광) 용도 : 굴곡이 있는 제품, 표면 스크래치, 알루미늄 용접, 알약 등의 라인스캔 돔 조명 특징 : 360도 방향에서 골고루 비추어 그림자 없는 균일하게 비추는데 최적 다단조명* 조명이 여러 층 또는 여러 파장대의 LED를 사용하여 피사체를 다양한 각도에서 비추도록 설계된 조명 링조명 (면발광) 용도: 캡측면, 내측면의 오염검사, 웨이퍼 외관 검사, 납땜 검사와 커넥터의 피치검사 특징: 헐레이션 현상으로부터 최적의 결과물을 얻을 수 있음 헐레이션 현상* 반사도가 높은 표면에 빛이 반사되어 발생하는 현상으로, 눈부심 현상이라고도 함. 링조명 로우앵글 (면발광) 용도: IC 날인검사, 기판 상의 상품 검사, 외형 및 표면 검사 특징: 광택 있는 검출체에 대해 균일하고 얼룩 없는 균일한 확산광 조사 동축 조명 (면발광) 용도: 웨이퍼, 금속표면, 필름, 액정, 유리 등 경면상의 정렬검사, 프린트 기판 패턴 특징: 시야 전체를 밝고 균일한 동축광으로 반사율이 높은 경면 물체의 손상이나 크랙 검사에 최적 플랫조명 (백라이트) 용도: 리드프레임검사, 투명필름의 오염검사, 투과조명으로 균일성이 필요한 경우 특징: 하부로부터 고휘도로 균일한 조사가 가능하므로, 형태 및 치수 검사에 최적 돔형 무영조명 용도: PCB 기판, 휴대폰 키패드, 캔바닥 검사 특징: 약간 굴절이 있고 표면 광택이 있는 물체의 문자 검사와 금속 표면을 균일하게 비추는데 최적 무영조명* 돔 형태의 조명으로 “무영”은 그림자가 없다라는 의미. 즉, 빛이 피사체에 균일하게 비추어 그림자가 생기지 않도록 하는 조명방식. 그 외 UV, SPOT 조명 등이 있습니다. 4. 선명한 이미지 취득을 위한 머신비전 조명 고려 요소 | 조명 선택 시 고려해야 할 요소 | 적절한 조명을 선택하기 위해서는 먼저, 물체의 재질을 확인한 후 검사 목적을 파악해야 합니다. 예를 들어, 표면 결함, 내부 결함, 크랙, 스크래치 등을 검출하기 위해서는 고대비 조명이나 특수 조명이 필요합니다. 반면, 치수나 형태를 측정하기 위해서는 물체의 표면을 균일하게 조사하는 조명이 필요합니다. 다음으로 검사 목적을 확정했다면 조명의 타입과 종류를 선택해야 합니다. 고해상도의 선명한 이미지를 취득하기 위해서는 조명의 균일성, 사이즈, 색상, 조사각 등을 고려해야 합니다. 조명의 조사각은 물체의 특정 부분을 강조하거나 그림자를 최소화하는 데 사용됩니다. 색상 검사가 필요한 경우에는 특정 파장의 조명이 필요한지 파악해야 합니다. 이처럼 각 조명의 특징과 목적을 이해함으로써 더 고화질의 이미지를 얻을 수 있습니다. image source: LVS 위 이미지는 조명의 색상에 따른 어플리케이션 이미지입니다. 왼쪽의 동축조명에서 발견되지 않았던 왼쪽 하단의 긁힘을 가운데 직사광 로우 앵글 조명을 푸른 광원으로 사용했을 때 선명하게 부각되며 물체의 엣지 역시 확인할 수 있습니다. image source: LVS 다음으로 조명의 파장의 종류에 따라 부각되는 부분이 상이하며 바코드 검사의 경우 맨 오른쪽의 IR 파장대에서 바코드를 선명하게 이미징 할 수 있습니다. | 더 정확한 이미징을 위한 링조명, 동축조명 포인트 | 링조명 RING LIGHT: 링조명과 로우앵글 링조명 링조명 링조명은 대게 오브젝트에 약간 떨어져 있고 카메라에 가깝게 설치합니다. LED 소자가 피사체에 직접 조사되어 화각의 중심을 효율적으로 밝힙니다. 예를 들어 배경을 밝게 포착하고 고대비로 텍스트 및 검사하고자 하는 영역을 고대비로 돋보이게 합니다. 링조명 어플리케이션 로우앵글 링조명 반면 로우앵글 링조명은 직사광에 비해 반사율이 높은 물체와 호환성이 좋습니다. 로우앵글 링조명은 물체에 가까이 설치합니다. 물체에 가깝게 설치된 빛이 낮은 각도로 사방에서 반사되어 물체의 요철을 돋보이게 합니다. 따라서 고각의 링조명이 커버할 수 없는 투명한 물체의 긁힌 자국을, 조명에 반사되어 흠집을 시각화 하기 어려운 상황을, 낮은 각도의 링조명으로 이미지를 촬영하면 조명의 눈부심을 제거하고 흠집을 더 잘 보이게 만듭니다. 로우앵글 링조명 어플리케이션 동축조명 CO-AXIAL BOX LIGHT 동축조명 동축조명은 눈으로 확인하기 어려운 작은 마킹이나 스크래치 등을 자동으로 감지해야 하는 상황에서 표면의 작은 긁힘과 거칠기를 이미징 하는 데 유용합니다. 동축조명(Coaxial Light)은 렌즈와 동일한 축에 설치된 박스형 조명으로, 물체 표면을 조명합니다. 동축조명은 관찰 축과 수직인 내부의 발광면과 하프 미러를 사용하여 조명을 물체 바로 아래로 조사합니다. 이를 통해 물체에서 정 반사되는 빛을 포착할 수 있습니다. 동축조명을 사용하면 물체 표면의 미세한 요철을 이미지화 할 수 있습니다. 예를 들어 링조명에서 이미징할 때 각인이 눈에 띄지 않는 상황에서 동축조명을 사용하면 표면 각인을 부각시킬 수 있습니다. 동축조명 어플리케이션 "동축조명을 선택할 때에 아래 두가지 사항을 고려하면 더 선명한 이미지를 취득할 수 있습니다" 지금까지 어떻게 조명을 선택해야 하는지 살펴봤습니다. 그러나 이미지를 캡처하는 데 있어 고려해야 할 많은 다양한 요소들이 더 있습니다. 조명 크기, 조광, 조명 거리와 각도, 카메라와 렌즈 등 다양한 요소와 환경을 고려해야 합니다. 이를 통해 고해상도의 선명한 이미지를 취득하여 정확한 이미지 분석과 결함 검출, 생산 효율성 및 품질 보증을 구축할 수 있습니다. 화인스텍이 취급하는 머신비전 조명 브랜드는 LVS와 REVOX가 있습니다. 좀 더 자세한 내용이 궁금하시거나, 전문적인 조명 선정 컨설팅이 필요하시다면, 언제든 화인스텍 전문가와 함께하세요! 조명 더 알아보기
2024.07.26안녕하세요, 화인스텍입니다. 오늘은 머신비전의 기본 구성 요소에 대해 알아보려 합니다. 머신비전은 현대 산업에서 필수적인 기술로 자리 잡고 있으며, 다양한 응용 분야에서 품질 관리, 자동화 및 검사 작업을 더욱 효율적으로 수행할 수 있도록 도와주고 있는데요. 게다가 인공지능과 딥러닝 기술의 발전으로 더욱 정교하고 정확한 이미지 분석이 가능해져 다양한 산업 분야에서 머신비전의 응용이 확대되고 있습니다. 즉, 지속적인 기술 혁신과 자동화 수요 증가로 인해 머신비전의 영향력이 점점 높아져 가고 있습니다. 이번 포스팅을 통해 머신비전 시스템이 어떻게 구성되어 있는지, 그리고 각각 어떤 역할과 중요성을 갖고 있는지에 대해 자세히 설명드리겠습니다. 함께 머신비전의 세계로 들어가 보시죠! 머신비전 시스템은 여러 가지 중요한 구성 요소들로 이루어져 있습니다. 각 요소들은 시스템이 원활하고 정확하게 작동하도록 하는 데 필수적인 역할을 합니다. "카메라" 머신비전 카메라는 이미지 캡처를 통해 시스템이 물체를 인식하고 분석할 수 있게 하는 장치로서 머신비전 시스템에서 가장 중요한 요소 중 하나입니다. 머신비전 카메라는 이미지 프로세싱 소프트웨어와 결합하여 자동화된 검사, 로봇 가이드, 물류 처리 등을 가능하게 함으로써 전체 시스템의 효율성을 극대화합니다. 카메라의 역할 및 중요성 비전 카메라의 종류로는 에어리어 스캔 카메라, 라인 스캔 카메라, 3D 카메라, 스마트 카메라, 멀티스펙트럼 카메라 등이 있습니다. 에어리어 스캔 카메라(Area Scan Camera) : 단일 프레임에서 이미지를 캡처하는데 사용되는 카메라? 라인 스캔카메라 (Line Scan Camera) : 한줄의 라인을 스캔하여 연속적으로 이미지를 구성하는 카메라 3D 카메라 (3D Camera) : X, Y 및 Z 평면에서 검사를 수행하고 공간에서 물체의 위치와 방향 계산을 할 수 있는 카메라 스마트 카메라 (Smart Camera) : 이미지 캡처와 처리를 카메라 자체에서 수행하는 독립적인 시스템을 갖춘 카메라 멀티스펙트럼 카메라 (Multispectral Camera) : 여러 파장의 스펙트럼 이미지를 동시에 캡처하여 물체의 다양한 특성을 분석할 수 있는 카메라 머신비전에서의 카메라는 산업 자동화와 품질 관리에 필수적인 장비입니다. 다양한 종류의 머신비전 카메라는 각각의 특성과 용도에 맞춰 다양한 산업 분야에서 활용되고 있습니다. 특히, 특정 응용 분야의 요구에 적합한 카메라를 선택하면 작업라인에서의 효율성과 정확성을 크게 향상시킬 수 있습니다. "렌즈" 이미지를 획득하고 피사체를 정확하게 포착하는 데 필수적인 역할을 하는 장치로서 렌즈의 선택과 최적화는 이미지의 해상도와 선명도를 향상시켜 시스템의 성능과 분석 정확도를 극대화합니다. 렌즈의 역할 및 중요성 렌즈의 종류로는 CCTV 렌즈, 텔레센트릭 렌즈, 매크로 렌즈, 가변 초점 렌즈, 라인스캔 렌즈, 줌 렌즈 등이 있으며, 각각의 용도와 목적에 맞게 선택됩니다. CCTV 렌즈 (CCTV Lens) : 조리개의 조절과 배율 변경이 가능하며, DOF(Depth of field)가 무한 광학계인 것이 특징인 렌즈 텔레센트릭 렌즈 (Telecentric lens) : 입사광이 렌즈의 광축에 평행한 렌즈로 이미지의 원근감을 최소화 하며 WD*가 고정인 렌즈 매크로 렌즈(Macro Lens) : CCTV 대비 왜곡을 최소화하고 가까운 거리에서만 초점을 맞추도록 설계된 렌즈 가변 초점 렌즈 (Vari-Focal) : 초점거리를 연속적으로 변화시킬 수 있는 렌즈 WD*: Working distance로 렌즈 앞단에서 물체까지의 거리 선명한 해상도의 이미지는 이미지 분석 검사의 정확도를 보장하며, 시스템의 효율성과 유연성을 증가시킵니다. 적절한 렌즈 선택은 이미지 검사 처리 속도를 높여 생산성을 향상시키고, 추가적인 처리와 보정을 줄여 비용 절감에 기여합니다. 이는 머신비전 시스템의 전반적인 성능과 신뢰성을 크게 향상시킵니다. "조명" 머신비전 시스템에서 조명은 선명한 이미지를 취득하는 데 있어 중요한 핵심 요소입니다. 조명을 통해 머신비전 시스템을 더욱 정확하게 분석하는 데 도움을 주며, 고품질의 고대비 이미지는 결함 검출, 측정, 인식 등의 작업에서 높은 신뢰성을 보장합니다 조명의 역할 및 중요성 조명의 종류로는 링 조명, 바 조명, 돔 조명, 백 라이트 등이 있으며, LED, 형광등, 할로겐 등 다양한 조명 기술이 사용됩니다. 또한, 조명의 방향과 색상, 강도도 머신비전 조명 설치에 있어 중요한 요소로 작용합니다. 링 조명 (Ling Light) : 카메라 주변에 원형으로 배치되어, 객체에 균일한 조명을 제공 바 조명 (Bar Light) : 긴 막대 형태로, 균일한 조명을 제공, 표면 결함 검사나 치수 측정과 같은 애플리케이션에 적합 돔 조명 (Dome Light) : 빛을 난반사시켜 그림자가 제거된 부드러운 이미지를 얻을 수 있습니다. 조명 반사율이 심한 대상물체에도 적합함 백 라이트 (Backlight) : 객체 뒤에서 조명을 제공하여, 객체의 윤곽을 뚜렷하게 만듦. 객체의 형태나 외곽선을 정확하게 분석하는 데 필수적 이미지의 품질이 향상되고, 분석의 정확도가 높이기 위해서는 다양한 환경과 조건에 맞는 적절한 조명을 선택해야 합니다. 최적화된 조명은 일관된 검사 결과와 비용 절감에 기여합니다. "프레임그래버" 프레임그래버는 "프레임(Frame)을 잡는다(Grab)"라는 뜻으로 이미지를 획득하기 위해 만들어진 장치로서 핵심 구성요소입니다. 주로 이미지 캡처, 전처리, 변환 등을 수행하여 소프트웨어가 더 효율적으로 작업할 수 있도록 도와줍니다. 프레임그래버(FrameGrabber)의 역할 및 중요성 프레임그래버(FrameGrabber)의 구조 프레임그래버는 제조, 의료, 자동차, 로봇, 보안 등 다양한 산업 분야에서 컴퓨터 비전 및 이미지 처리 응용에 활용됩니다. 또한 머신비전 시스템에서 데이터의 신속하고 정확한 전송, 고품질 영상 유지, 다양한 카메라 인터페이스 지원, 실시간 처리 등 여러 핵심 기능을 수행하여 시스템의 성능과 효율성을 극대화하는데 중요한 역할을 합니다. "소프트웨어" 소프트웨어는 프레임그래버가 처리한 데이터를 분석하고, 결과를 도출하여 시스템의 전체 성능을 제어하는 핵심 요소입니다. 이미지 분석 알고리즘을 적용하여 결함 검출, 객체 인식, 패턴 매칭 등을 수행합니다. 소프트웨어의 역할 및 중요성 소프트웨어의 종류로는 전용 소프트웨어 패키지, 프로그래밍 라이브러리, 딥러닝 프레임워크, 클라우드 기반 솔루션 등이 있으며, 유연한 커스터마이징과 확장성을 제공하여 다양한 응용 분야에 적합하게 맞출 수 있습니다. 전용 소프트웨어 패키지 : 특정 목적을 위해 설계된 소프트웨어 솔루션으로 이미지 분석, 물체 인식 등에 사용? 프로그래밍 라이브러리 : 이미지 처리 및 컴퓨터 비전 작업에 필요한 프로그램 개발에 필요한 기능을 미리 구현해 놓은 코드 기반의 라이브러리? 딥러닝 프레임워크 : 인공지능과 머신러닝을 활용한 이미지 분석을 비롯해 다양한 응용 분야를 지원하는 소프트웨어 툴 클라우드 기반 솔루션 : 클라우드 인프라를 이용해 이미지 처리 및 분석을 포함한 다양한 서비스와 기능을 제공하는 솔루션 또한, 자동화된 분석과 결정을 통해 인력 비용을 줄이고 운영 비용을 절감하는 데 기여합니다. 이처럼 머신비전 소프트웨어는 정확한 이미지 분석과 실시간 처리로 시스템의 신뢰성과 효율성을 높입니다. "인터페이스" 인터페이스는 머신비전 시스템에서 각 구성 요소 간의 데이터 전송 및 제어를 담당하는 중요한 부분입니다. 이는 카메라, 프레임그래버, 소프트웨어, 그리고 외부 장치 간의 원활한 상호작용을 가능하게 하며, 시스템이 효율적으로 작동하도록 돕습니다. 인터페이스의 역할 및 중요성 인터페이스의 종류로는 USB, Camera Link, CoaXPress, GigE 인터페이스 등이 있으며, 각각의 특성과 용도에 따라 선택됩니다. USB : 컴퓨터에 기본으로 탑재되어 있는 인터페이스 Camera Link : 주로 고성능을 요구하는 산업용 카메라에 사용되는 고성능 인터페이스 CoaXPress : 고사양, 고해상도의 산업용 카메라에서 대용량 이미지 전송을 지원하는 고속 인터페이스 GigE 인터페이스 : Gigabit Ethernet 인터넷 프로토콜을 기반으로 하며, 고속 카메라 인터페이스용으로 표준 Cat-5 및 Cat-6 케이블을 사용 인터페이스는 머신비전 시스템에서 데이터 전송, 장치 간 통신, 시스템 통합을 담당하며, 실시간 데이터 처리와 신뢰성 향상, 유연성 및 확장성 제공, 비용 효율성 등에서 중요한 역할을 합니다. 이렇게 머신비전 시스템은 카메라, 렌즈, 조명, 프레임그래버, 소프트웨어, 인터페이스 등으로 구성되어 있습니다. 각 요소는 시스템의 성능과 정확도에 중요한 역할을 하며, 최적의 조합과 설정이 성공적인 머신비전 구현을 위해 필수적입니다. 위와 같은 구성 요소들은 이미지 품질 향상, 정확한 분석, 시스템 효율성 증대, 유연성 및 적응성 향상, 비용 절감 등의 이유로 매우 중요합니다. 다음 게시글도 머신비전 시스템에 대한 유익한정보를 가지고 오겠습니다 :) 머신비전 솔루션에 대해 더 궁금한 점이 있다면, 화인스텍을 방문해 주시기 바랍니다.
2024.07.19