C5-CS Series

User Manual for High Speed Laser 3D Sensors

Rev. 1.8 AT - Automation Technology GmbH

Table of Contents

TABLE OF CONTENTS	1
GENERAL NOTES	5
Copyright	5
Disclaimer	5
Trademarks	5
Symbols and Notes	6
Maintenance Instructions	
C5-CS SERIES OVERVIEW	8
Introduction	8
The C5-CS Series General Specifications Laser Safety Guideline Laser Safety Classification Laser Categories Laser Responsibilities The C5-CS Sensor Specifications Temperature Range (Operation/Storage) Temperature and 3D Measurement General Guidelines for Heat Dissipation Model Overview with Measurement Specifications Definition Working Distance and Field of View (FOV) Definition Coordinate System Mechanical Drawings Housing Type Dimensions Compact Sensor Options Laser Band-Pass Filter Laser MTBF (Mean Time Between Failures) Subpixel Limitations	11 11 11 13 14 15 15 15 15 16 19 19 20 20 20 20 21 36 36 36 36 36 36 36
C5-CS SERIES OPERATIONAL REFERENCE Measuring Principle Measurement Geometry The C5-CS Sensor Algorithms	38

The Maximum Intensity Profile Mode (MAX)	
The Threshold Mode (TRSH)	
The Center Of Gravity Mode (COG)	
The FIR Peak Mode (FIR PEAK)	
The FIR Filter Function	44
The High Dynamic Range 3D Feature (HDR-3D) of C5-CS-GigE	
Multiple Slope Function	
Single Slope Mode (Default Mode)	
Dual Slope Mode (1 Knee Point)	
Triple Slope Mode (2 Knee Points)	
Comparison of Slope Modes	
Multi-Frame Readout Mode (NDR)	
The Data Output Format of C5-CS-GigE	
The Data Channel Assignment DC0, DC1 and DC2	
The Output Frame Structure	
Index Definition	
Examples of Output Frame Structure	
Advanced AOI Functions	
AOI-Search	
AOI-Tracking	55
C5-CS-GigE Triggering	
Description of Profile Trigger Modes	
Trigger Control – RS422 Resolver	
Description of Modes for Triggering of Sequencer/Frame and Profile Acquisition	59
The Chunk Data Mode of C5-CS-GigE	
General Description	61
Payload Layout in Chunk Data Mode	
XML Descriptors and Id's	
ChunkImageInfo	
ChunkAcqInfo	
ChunkImage	
Chunk Data Structure	64
The GigE-Vision Events	65
The Web Interface	66
The External CS-IO-Panel (Breakout Board)	68
Mechanical Drawings	
Clamp Configuration	
Mechanical Dimension	
The C5-CS Series I/O Schematics	71
I/O and Encoder with Differential TTL-Mode for RS422	
I/O and Encoder with Differential HTL-Mode for RS422 (Option)	
I/O and Encoder with Single Ended HTL or TTL Mode for RS422 (Option)	
Part Number for I/O and Encoder Option	
Encoder / Resolver Input Specification	
Master/Slave Connection	75
Example configuration for Master/Slave Connection	75

C5-CS-GigE Interface	
The GigE Interface	
The I/O & Power Interface	
Description of LEDs	
Description of LEDs for model C5-2040CS18-38-2X	
Master	
Slave	
The C5-CS Cables	81
Cables for Power, I/O and Laser Control	
Wire Assignment of M12 17 pin Pigtail Cable	
Cables for GigE Interface	
Orientation of Angled Adapter Cable	
The C5-CS Series GenICam Features	88
Device Control	
Image Format Control	
Acquisition Control	
Camera Control	
A0Is	
FIR Control	
Mode and Algorithm Control	
Sensor Control	
Data Output Channels	
Commands	
Light Control	
Camera IO	
Trigger Control	
RS422 Resolver	
AutoStart	
Transport Layer Control	
GigE Vision	
User Set Control	
Chunk Data Control	
Event Control	
File Access Control	
CXEXPLORER OVERVIEW	91
The cxExplorer	91
cxExplorer Features	٥٦
Image Wizard	
Image Mode	
3D Wizard	
3D Mode	
CXSOFTWARE DEVELOPMENT KIT	96
QUICKSTART A C5-CS SENSOR	97
CALIBRATE THE SENSOR DATA	
cxExplorer	98

cxSDK	99
cxShow3d	
SERVICE INFORMATION	
Contact	
Support	
Product Inquiries and Price Quotations	
Warranty Conditions	
Warranty Conditions Warranty Period Extended Warranty	
Return Policy	
Document Revision	

General Notes

Copyright

© 2022 AT - Automation Technology GmbH

All rights reserved. No part of this document shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise without consent in writing from the owners, AT - Automation Technology GmbH.

Disclaimer

While care has been exercised in the preparation of this document to ensure that it is fully correct and comprehensive, the owners assume no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein. No license is granted under any patents or patent right of AT - Automation Technology GmbH.

Trademarks

All nationally and internationally recognized trademarks and trade names are hereby acknowledged. This document is subject to change without notification. All rights reserved.

Symbols and Notes

The following general safety rules must be taken into account during installation, operation and maintenance. Failure to do so may cause damage to the operator, the sensor or the environment.

- Warning
 - Do not use the sensor in adverse environmental conditions, such as in rooms with a high concentration of flammable gases, vapors or dust.
 - Make sure that all cables are routed without risk of tripping.
 - Only connect the power cord to the mains voltage after finishing the installation of the camera.

Read the manual

- Read the operating instructions before using the sensor.
- Make sure that the operating personnel have read the operating instructions and understood the contents!
- Observe the safety instructions.
- Observe the locally applicable safety and accident prevention regulations.
- In case of any uncertainty contact the manufacturer.
- **CE** marking, see Declaration of Conformity
- **RoHS** RoHS mark, the system complies with RoHS Directive 2002/95 / EG

WEEE mark, the system is registered according to the WEEE directive under the WEEE-Reg.-No. DE 13042735

Safety information

General remark

Maintenance Instructions

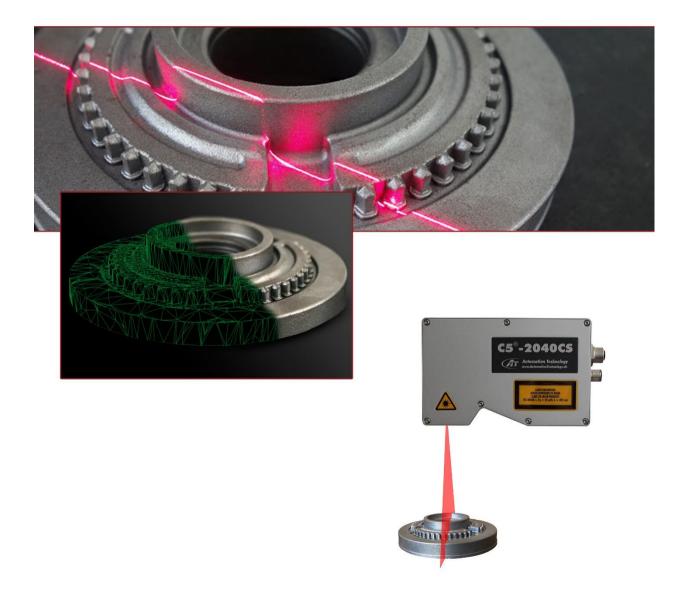
Cleaning

The sensor is maintenance-free. This chapter is limited to cleaning the sensor. Use only the following items:

- Water
- Residue-free, weak detergent solution
- Soft cloth
- Lens cleaner liquid or 96% ethyl alcohol
- Lens cleaning cloths

Clean the sensor with the wetted, non-dripping cloth. Don't expose the sensor to running liquids or immerse it.

If the protective windows are dirty, it must only be cleaned by authorized specialist personnel. Clean the windows only when absolutely necessary and within a clean environment.



Never use solvents or similar liquids to clean the sensor, protectiv windows, cables or accessories. This can lead to damage.

C5-CS Series Overview

Introduction

The C5-CS series is a revolutionary product family of intelligent high speed laser triangulation sensors. It is optimised for 3D profile measurement by means of laser triangulation technique. The 3D profile extraction is performed in the sensor by using high performance Field Programmable Gate Array processors. At the same time the 3D profile data is sent to the PC over a Gigabit Ethernet interface (GigE). This extreme data reduction boosts the measuring speed to unprecedented levels without affecting the performance of the connected image processing unit.

The C5-CS Series General Specifications

Sensor Controls	
Synchronization Modes	Free Running, Triggered, Software Triggered
Exposure Modes	Programmable, Pulse Controlled
Shutter Modes	Global Shutter
Digital Input	2 electrical isolated inputs, +5V to +24V DC VIL, logic "0" Voltage < 1.5V VIH, logic "1" Voltage > 3.5V Max. frequency: 450kHz Min. pulse width: >2µs
Digital Output	2 electrical isolated outputs, +5V to +24V DC VOL, logic "0" Voltage < 0.5V VOH, logic "1" Voltage \geq 3.8V IOL, logic "0" drive current max. 100mA IOH, logic "1" drive current max. 100mA
Encoder/Resolver Input ¹	A+, A-, B+, B-, Z+, Z- High-Speed Triple RS-422 Receiver Max. input voltage +5V DC (TTL level) Max. current consumption per channel: 21mA RS-422-Mode, max. frequency: 15MHz Min. pulse width: >32ns
Laser Supply	Reverse voltage protection Supply voltage +10V to +24V DC Laser modulation
Sensor Features	
High Dynamic Range Imaging	Multiple Slope, Multi-Frame Readout
3D-Algorithms	MAX, TRSH, COG, FIR PEAK
3D-Scan Features	Automatic AOI-Tracking, Automatic AOI-Search, Multiple AOIs, AutoStart
Electrical Interface	
Power Supply	+10V to +24V DC (max. +27V DC)
Power Consumption	6W to 10W (depending on sensor model)
Operating Temperature	0°C to +50°C (non-condensing)
Output Data Interface	Gigabit Ethernet (IEEE 802.3)

¹ Valid for differential TTL (standard). For HTL and single ended options see section The C5-CS Series I/O Schematics

Communication Protocol	GigE Vision with GenICam					
Mechanical Interface						
Power Connector	ctor					
Ethernet Connector	8 pin, A-coded M12 connector					
Mechanical Stress Specification						
Vibration (sinusoidal each axis)	2g, 20 to 500Hz	IEC 60068-2-6				
Vibration (random each axis)	5g, 5 to 1000Hz	IEC 60068-2-64				
Shock (each axis)	15g IEC 60068-2-27					
Enclosure rating	IP67	IEC 60529				

Laser Safety Guideline

The C5-CS series has an integrated laser (Laser = Light Amplification by the Stimulated Emission of Radiation) module, which has to incorporate additional safety features, depending on the applicable laser class.

Laser Safety Classification

The International Electrotechnical Commission (IEC) and the U.S. Center for Devices & Radiological Health (CDRH) enforce strict safety requirements for lasers and laser products.

The relevant standards, IEC 60825–1 (2001-08) and 21 CFR 1040.10/11 (CDRH), classify lasers into several categories. The regulations regarding the different classes applicable to the used laser are given here for the IEC 60825-1 standard.

Laser Categories

The classification of a laser product is based on the laser power measured according to the methods defined by the IEC standard. The classification refers to the wavelength range between 400 nm and 700 nm.

This corresponds to the maximum light power measured through a 7 mm aperture, measured in distances given in the standard. The limitations for the classification of the laser classes are then:

Class 2M:

Class II/2M lasers are visible low power lasers limited to 1 mW continuous wave or more due to the eye blink reflex for emission duration less than 0.25 seconds.

Considered eye-safe with caution but may present a greater hazard if viewed using collecting optics. Focusing of this light into the eye could cause eye damage. Class II/2M laser products must bear warning and certification labels as shown in the figure below.

This label reprinted here is an example for an IEC classified 2M laser. For detailed specifications observe the label on your sensor.

Class 3R:

Class IIIa/3R lasers emit optical power between 1 to 5 mW. The accessible emission limit is five times higher than for Class 2 visible laser light. Radiation in this class is considered low risk, but potentially hazardous. Fewer manufacturing requirements and control measures for 3R laser users apply than for 3B lasers.

Class IIIa/3R laser products must bear warning and certification labels as shown in the figure below.

This label reprinted here is an example for an IEC classified 3R laser. For detailed specifications observe the label on your sensor.

Class 3B:

Class IIIb/3B lasers are medium power laser sources above 5mW up to 500 mW. Considered dangerous to your retina if exposed. Normally class IIIb/3B lasers will not produce a hazardous diffuse reflection. Viewing into the reflection should not exceed exposure duration more than 10 seconds Class IIIb/3B laser products must bear warning and certification labels. In addition to the above requirements, the certification for class IIIb/3B laser systems is only given if additional safety requirements are fulfilled and a laser safety officer is named.

This label reprinted here is an example for an IEC classified 3B laser. For detailed specifications observe the label on your sensor.

Laser Responsibilities

Requirement	Class 2M	Class 3R	Class 3B
System Interlock	Not required	Not required	Required
Warning Signs	Not required	Required	Required
Emission Indicator	Not required	Not required	Required
Laser Safety Officer	Not required	Required	Required
Key Control	Not required	Not required	Required – key removal disable laser
Eyewear Protection	Not required	Not required	Required – under special circumstances
Emission Delay	Not required	Not required	Required
Specular reflection	Not required	Avoid unintended reflections	Avoid unintended reflections
Beam Path Control	Not required	Not required	Required
Beam Attenuator	Not required	Not required	Required
Training	Not required	Required for operator and maintenance personnel	Required for operator and maintenance personnel

The C5-CS Sensor Specifications

Parameters		Sensor Specifications						
Sensor Type		CMOS						
Shutter Type			(Global Shutter				
Resolution (Row x Colu	mn) in Pixel	1280	x1024	1600 / 2048 x 1088	4096 x 3072			
Sensor ADC Resolution		12	Bit	10 Bit				
Sensor Dynamic Range			9	OdB with HDR				
Max. Power Consumpti	Max. Power Consumption			6 W	10 W			
Max. Profile Rate at Ma	9470)0 Hz	25000 Hz	14500 Hz				
Effective Profile Rate	Number of	Effective Frame / Profile Rate (Hz)						
(Hz) at Max. Row	Rows	1280 Pixel	688 Pixel ³					
Width	8	94700	155000	25000	14500			
	16	56000	95700	16000	9700			
	32	30840	54200	9540	5800			
	64	16240	29000	5240	3200			
	128	8340	15000	2700	1700			
	256	4230	7660	1400	900			
	512	2130	3870	723	450			
	1024	1070	1940	358	225			
	2048	-	-	1804	113			
	3072	-	-	-	75			

² With reduced AOI (AoiHeight = 8)

 $^{^{\}rm 3}$ C5-1280CS-GigE models can reduce the sensor width to increase the profile rate

⁴ On request

Temperature Range (Operation/Storage)

Operating temperature:	0°C to +40°C (+32°F to +104°F)
Sensor chip temperature (on-board) during operation:	0°C to +60°C (+32°F to +140°F)
Humidity during operation:	20 % to 80 %, relative, non-condensing
Storage temperature:	-20°C to +80°C (-4°F to +176°F)
Storage humidity:	20 % to 80 %, relative, non-condensing

The temperature affects the lifetime of the C5-CS camera. We recommend to ensure a proper heat dissipation.

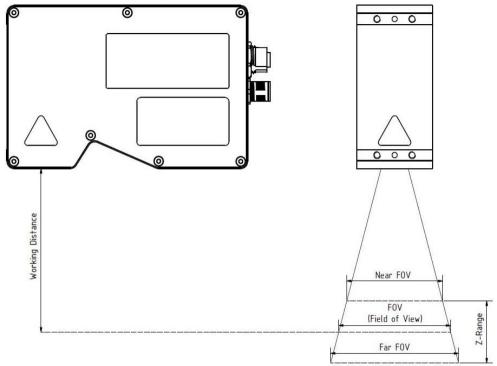
Temperature and 3D Measurement

The 3D laser sensor will gradually become warmer during the first hour of operation. After one hour of operation, the housing temperature as well as the sensor temperature should be stabilized and no longer increase. Afterwards a reliable and stable 3D measurement is given.

Rapid changes of the ambient temperature greater than 10°C can affect the accuracy of the measurement. To achieve the highest possible accuracy, it is recommended to wait until the sensor got back into a stabilized state where the sensor temperature doesn't change anymore.

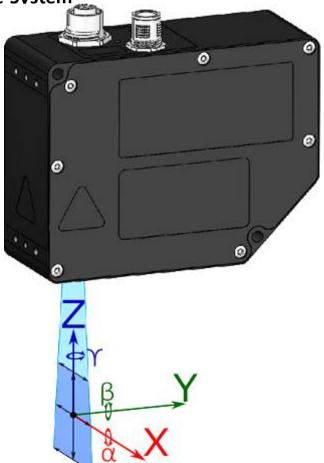
General Guidelines for Heat Dissipation

- Mount the C5-CS sensor to a heat conductive material with an absolute thermal resistance of at least 6 K / W.
- Always monitor the temperature of the sensor (on-board, available over GenICam).
- Keep in mind that dark current and noise performance for CMOS sensor will degrade at higher temperature.

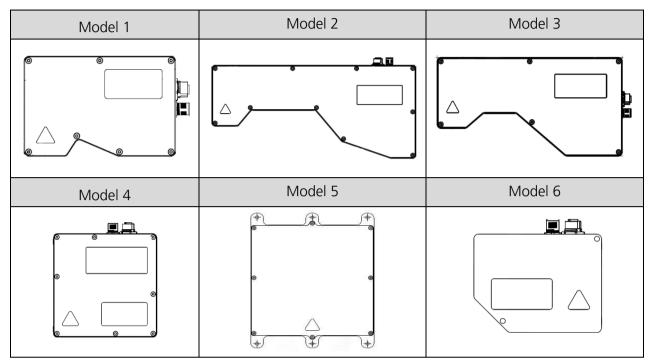

Model Overview with Measurement Specifications

Part Number	Model Name	X-FOV	Z- Range	Working Distance	Resolution X	Resolution Z	Repeat ability	Linearity (of Z- Range)	Points per Profile	Housing Type
		[mm]	[mm]	[mm]	[µm]	[µm]	[µm]	[%]	[pixels]	
202 202 601	C5-1280CS35-7	7	5.2	31	5.5	0.2	0.2	±0.02	1280	Model 6
202 202 604	C5-1280CS35-12	12	8	31	10	0.2	0.1	±0.02	1280	Model 6
202 202 062	C5-2040CS30-12	12	6	51.5	5.5	0.2	0.2	±0.02	2048	Model 4
202 202 602	C5-1280CS25-20	20	20	72	16	0.5	0.2	±0.02	1280	Model 6
202 202 064	C5-1280CS23-29	29	40	106	23	0.8	0.4	±0.01	1280	Model 1B
202 202 015	C5-1600CS23-30	30	40	106	19	0.7	0.5	±0.01	1600	Model 1A
202 202 014	C5-2040CS23-38	38	40	106	19	0.7	0.5	±0.01	2048	Model 1A
202 202 066	C5-2040CS18-38-2X	38	30	117	19	0.83	0.7	±0.02	2048	Model 5
202 202 603	C5-1280CS21-40	40	46	90	31	1.2	0.4	±0.02	1280	Model 6
202 202 067	C5-1280CS23-47	47	40	106	37	1.4	0.5	±0.01	1280	Model 1B
202 202 013	C5-1600CS23-49	49	40	106	31	1.2	0.7	±0.01	1600	Model 1A
202 202 605	C5-2040CS21-53	53	46	90	26	1.0	0.5	±0.02	2048	Model 6
202 202 012	C5-2040CS23-63	63	40	106	31	1.2	0.7	±0.01	2048	Model 1A
202 202 068	C5-1280CS23-75	75	40	106	59	2.3	2.0	±0.01	1280	Model 1B
202 202 074	C5-1280CS14-76	76	80	197	59	3.5	1.6	±0.01	1280	Model 1B
202 202 011	C5-1600CS23-78	78	40	106	49	1.9	1.0	±0.01	1600	Model 1A

C5-CS Series User Manual Rev. 1.8

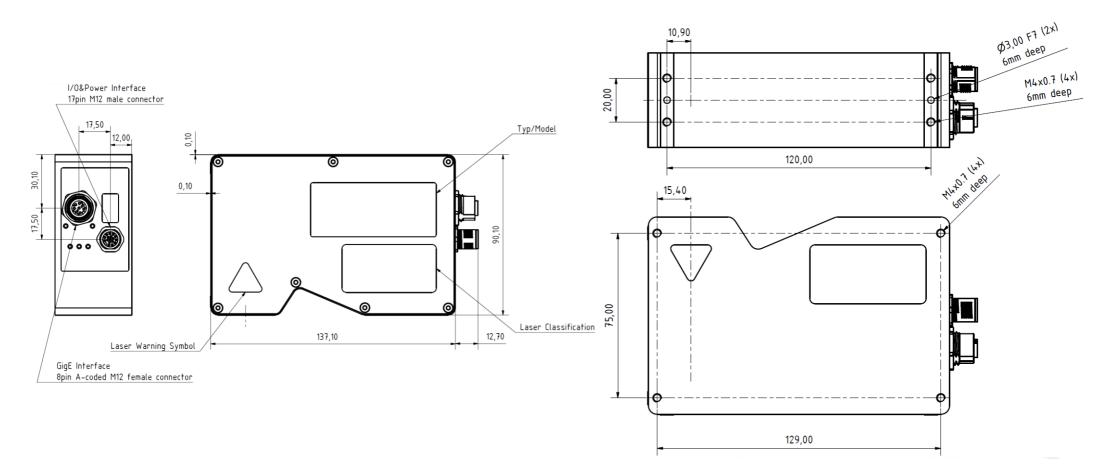

Part Number	Model Name	X-FOV	Z- Range	Working Distance	Resolution X	Resolution Z	Repeat ability	Linearity (of Z- Range)	Points per Profile	Housing Type
		[mm]	[mm]	[mm]	[µm]	[µm]	[µm]	[%]	[pixels]	
202 202 060	C5-4090CS39-82	82	15	172	20	0.5	0.4	±0.01	4096	Model 3
202 202 010	C5-2040CS23-100	100	40	106	49	1.9	1.1	±0.01	2048	Model 1A
202 202 078	C5-2040CS14-100	100	120	197	49	3.0	2.5	±0.01	2048	Model 1B
202 202 076	C5-1280CS14-120	120	120	197	94	5.9	3.7	±0.01	1280	Model 1B
202 202 075	C5-1600CS14-125	125	120	197	78	4.9	3.7	±0.01	1600	Model 1B
202 202 063	C5-4090CS39-145	145	15	172	35	0.9	0.7	±0.01	4096	Model 3
202 202 073	C5-2040CS14-160	160	120	197	78	4.9	6.6	±0.01	2048	Model 1B
202 202 050	C5-4090CS30-182	182	250	400	44	1.4	2.1	±0.01	4096	Model 2A
202 202 065	C5-1280CS30-248	248	300	400	194	6.1	3.1	±0.01	1280	Model 2A
202 202 041	C5-1600CS30-260	260	300	400	163	5.1	2.5	±0.01	1600	Model 2A
202 202 048	C5-4090CS30-288	288	300	400	70	2.2	1.2	±0.01	4096	Model 2A
202 202 052	C5-4090CS19-302	302	500	700	74	3.5	2.8	±0.01	4096	Model 2B
202 202 040	C5-2040CS30-330	330	300	400	161	5.0	2.6	±0.01	2048	Model 2A
202 202 069	C5-1280CS19-480	480	500	700	375	18	12	±0.01	1280	Model 2B
202 202 054	C5-4090CS18-490	490	800	744	120	6.0	5.0	±0.01	4096	Model 2B
202 202 046	C5-4090CS30-495	495	300	400	121	3.8	2.2	±0.01	4096	Model 2A
202 202 043	C5-1600CS19-500	500	500	700	313	15.0	10.0	±0.01	1600	Model 2B
202 202 042	C5-2040CS19-640	640	500	700	313	15.0	10.0	±0.01	2048	Model 2B

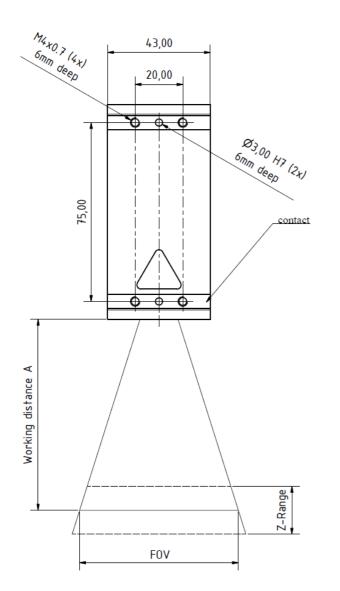
Part Number	Model Name	X-FOV	Z- Range	Working Distance	Resolution X	Resolution Z	Repeat ability	Linearity (of Z- Range)	Points per Profile	Housing Type
		[mm]	[mm]	[mm]	[µm]	[µm]	[µm]	[%]	[pixels]	
202 202 045	C5-1600CS18-795	795	800	744	497	25.1	8.4	±0.01	1600	Model 2B
202 202 056	C5-4090CS18-842	842	800	744	206	10.4	8.0	±0.01	4096	Model 2B
202 202 044	C5-2040CS18-1015	1015	800	744	496	25.1	8.4	±0.01	2048	Model 2B
202 202 077	C5-2040CS15-1200	1200	800	920	586	35.0	10.5	±0.01	2048	Model 2B

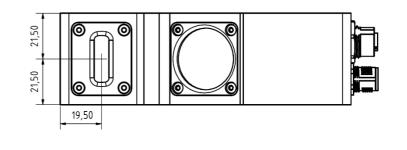

Definition Working Distance and Field of View (FOV)

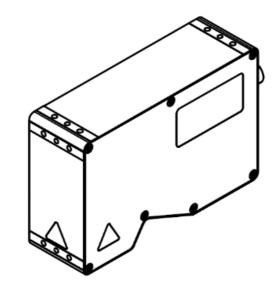
Definition Coordinate System

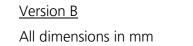
Mechanical Drawings

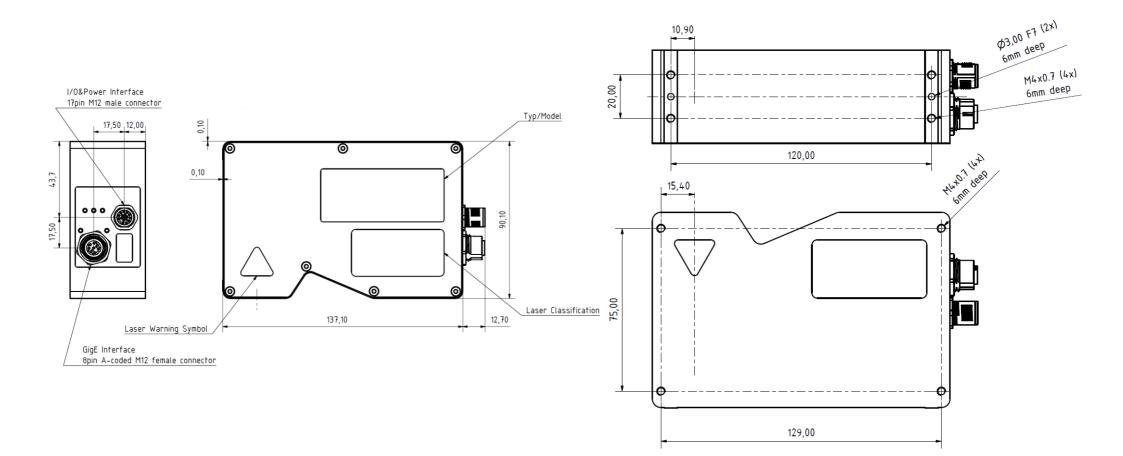

Housing Type

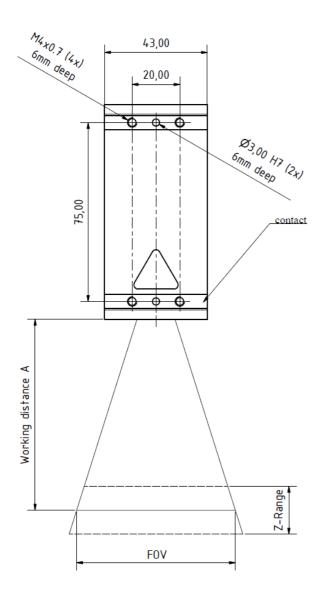


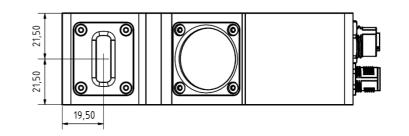

Dimensions

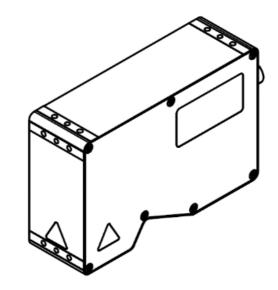

Model 1

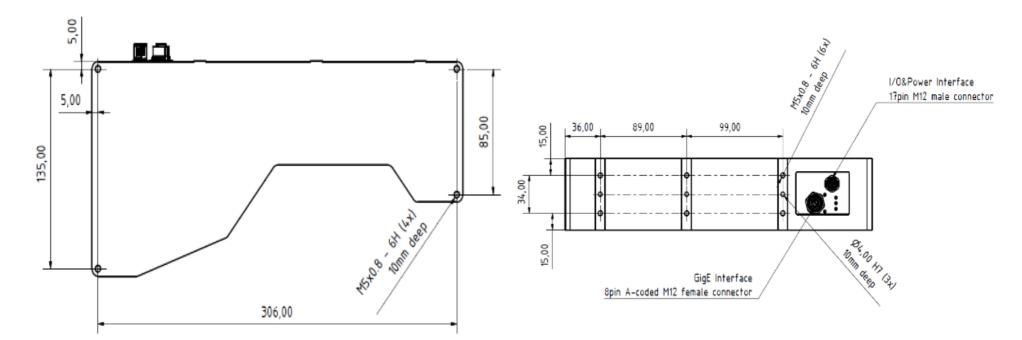

Version A

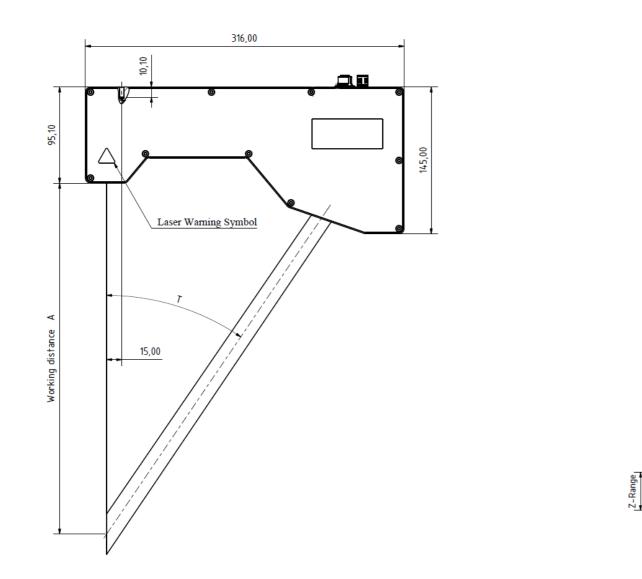


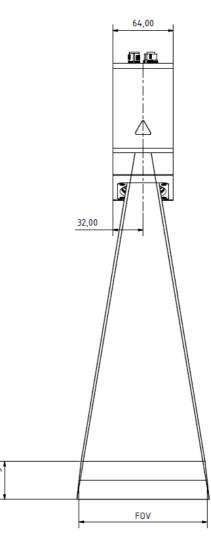


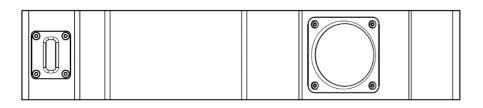


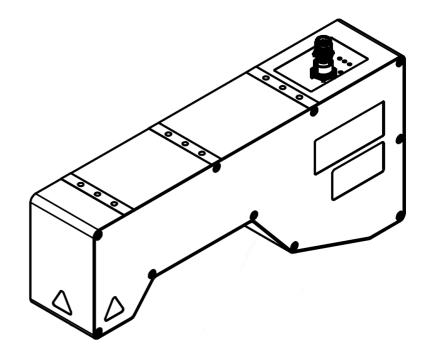




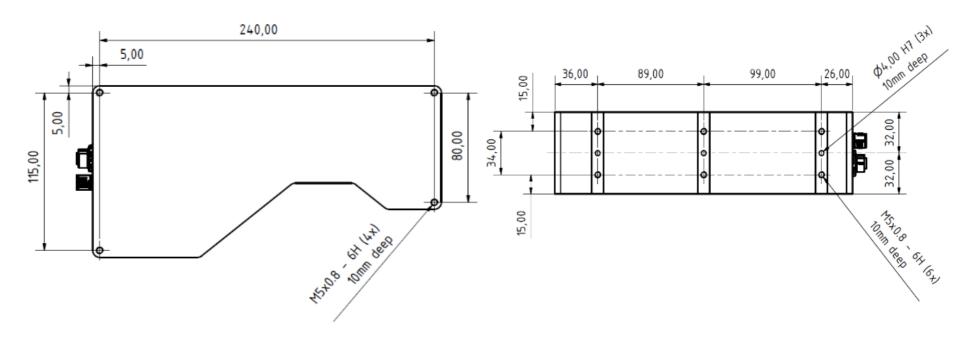


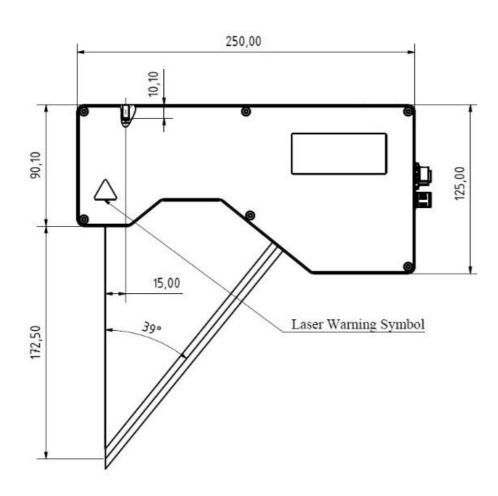


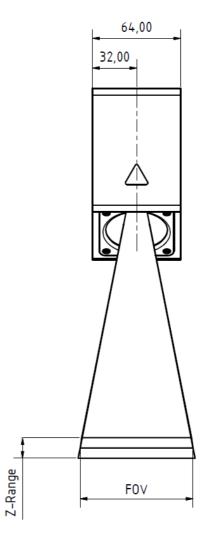

Model 2



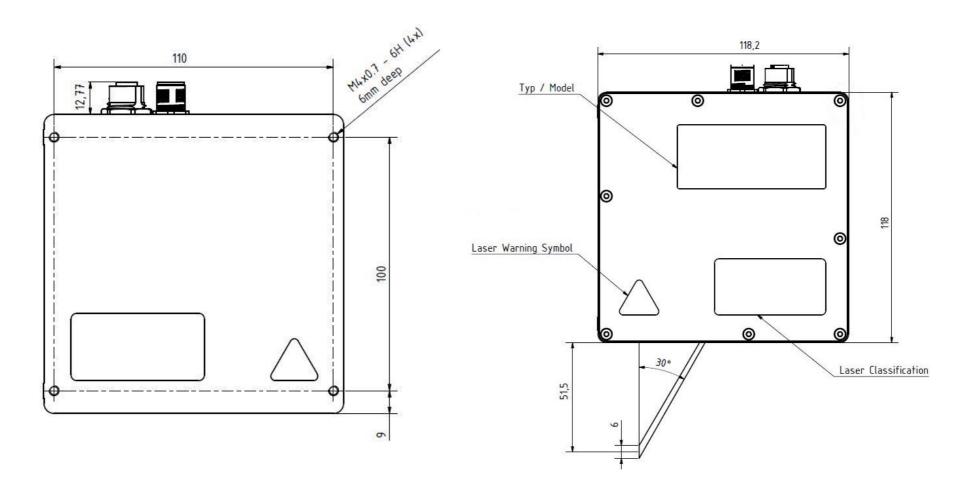
Version A

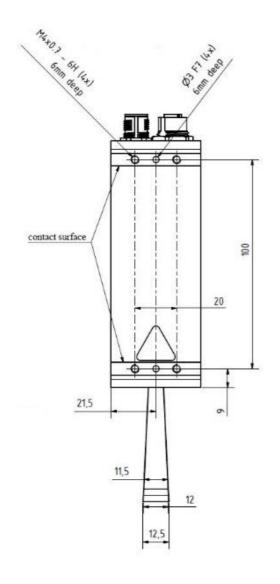


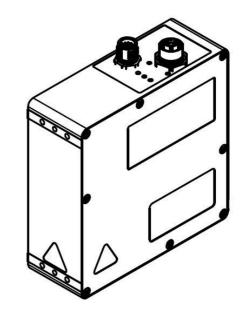

Version B


|--|--|--|

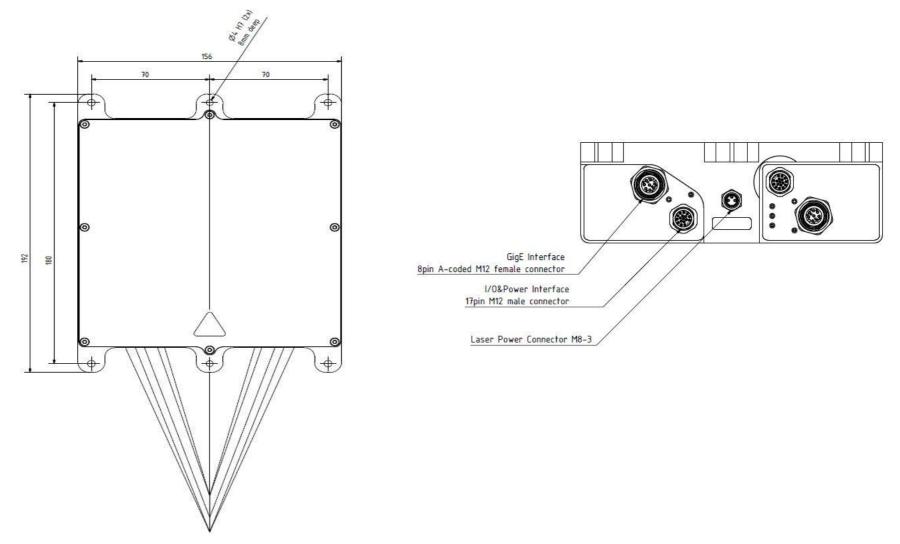
Model 3

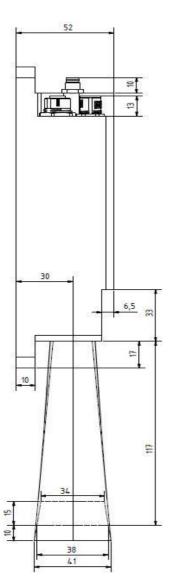


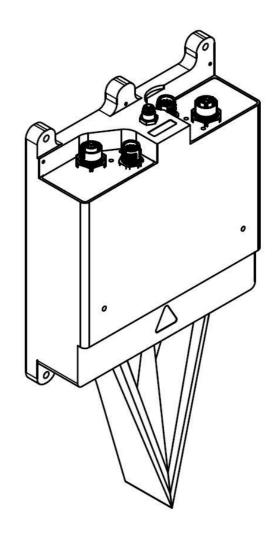


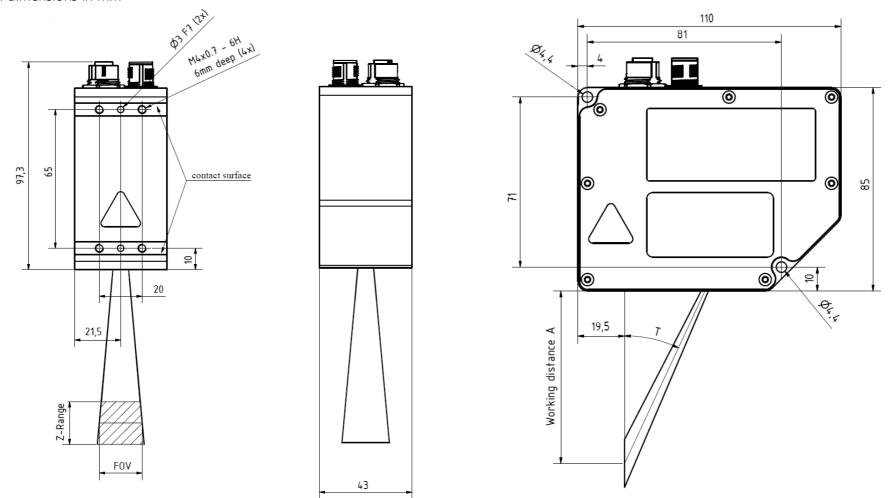


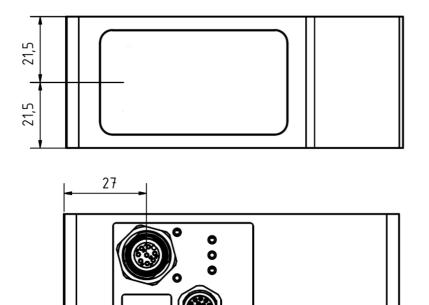
All dimensions in mm

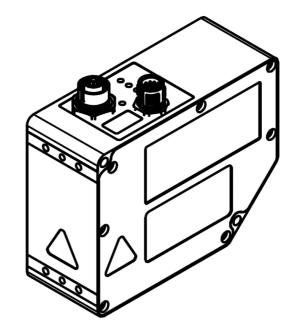







Model 5





Model 6

Compact Sensor Options

Laser

Part Number #	Description	MTBF @25°C (h)
Default #1 ¹	C5 Compact Sensor Red Laser, 660 nm, 20 mW, Class 3R	20000
Default #2 ²	C5 Compact Sensor Red Laser, 660 nm, 20 mW, Class 2M	20000
Default #3 ³	C5 Compact Sensor Blue Laser, 450 nm, 10 mW, Class 2M	10000
202 204 105	C5 Compact Sensor Red Laser Option, 660 nm, Class 2M	160000
202 204 110	C5 Compact Sensor Red Laser Option, 660 nm, 130 mW Class 3R or 3B	75000
202 204 100	C5 Compact Sensor Blue Laser Option, 405 nm, 25 mW, Class 3R	25000
202 204 104	C5 Compact Sensor Blue Laser Option, 450 nm, 75 mW Class 3B	15000
202 204 106	C5 Compact Sensor Blue Laser Option, 405 nm, Class 2M	50000
202 204 107	C5 Compact Sensor Blue Laser Option, 405 nm, 150 mW, Class 3B thin line	10000
202 204 108	C5 Compact Sensor Blue Laser Option, 405 nm, 150 mW, Class 3B	10000

Band-Pass Filter

202 204 200	C5 Compact Sensor Narrow Band-Pass Filter Option, 660 nm \pm 14 nm	
-------------	--	--

Laser MTBF (Mean Time Between Failures)

The laser MTBF describes the expected time between failures of a laser during operation. The described MTBF values are for an environment temperature of 25°C. Higher temperatures will reduce the laser life time.

¹ Not available for models with Default #2 or Default #3

² Available for model C5-2040CS23-100, C5-2040CS14-160, C5-2040CS30-330, C5-4090CS30-495, C5-2040CS19-640, C5-1600CS18-795, C5-4090CS18-842, C5-2040CS18-1015, C5-2040CS15-1200 and C5-4090CS39-145

³ Available for model C5-2040CS18-38-2X

Subpixel Limitations

The range values of the 3D sensors are limited to 16bit which result to possible values between 0 and 65535. Setting the subpixel value to 6 correspond to a factor of $2^6 = 64$. If the laser line appears at a sensor row higher than #1023 (with 6 subpixel) will result in a bit overflow. For example: laser line at row #1500 -> 1500 x $2^6 = 96000$.

Therefore, it can be necessary to use a lower subpixel value to avoid a bit overflow. The table below shows the maximum subpixel value compared to the used number of rows and the laser line appearance on the sensor ship without bit overflow.

The subpixel value in the factory configuration is always set to fit the complete Z-Range on the sensor chip without overflows.

ROWS	0	1	2	3	4	5	6
1023	✓	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark
2047	✓	\checkmark	\checkmark	\checkmark	✓	✓	×
3072	\checkmark	\checkmark	\checkmark	\checkmark	✓	×	×

Nevertheless, it is still possible to use a higher subpixel value even when the laser line appears on a sensor row >#1023. In that case make sure that the defined AOI is smaller or even 1023/2047 rows and that the flag AbsOffsetPos (Camera Control -> Mode and Algorithm Control -> AbsOffsetPos) is set to false. Then the offset position with respect to the start row of the AOI is returned and thus the laser line can appear on sensor rows >#1023.

With the release of the new C5-1280CS models some new features were implemented based on the SFNC 2.3 standard as well as some AT specific features.

One new feature is the Mono8 mode in 3D line mode to reduce the amount of acquired data to be able to increase the maximum profile frequency. This reduction leads to a specific set up which is described in the table below.

Rows	0	1	2	3	4	5	6
3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
7	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	×
15	✓	\checkmark	\checkmark	\checkmark	✓	×	×
31	✓	\checkmark	\checkmark	\checkmark	×	×	×
63	✓	\checkmark	\checkmark	×	×	×	×
127	✓	\checkmark	×	×	×	×	×
255	\checkmark	×	×	×	×	×	×

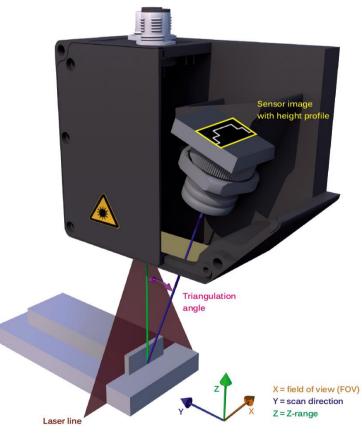
Using number of rows with a higher subpixel accuracy then stated in the table above can result in a bit overflow. That happen easy, when the pixel values go over the 8 Bit ($2^8 - 1 = 255$) range.

More details regarding the operation of the C5-1280CS sensor can be found in a separate application note.

C5-CS Series Operational Reference

Measuring Principle

The C5-CS sensor acquires height profiles and height images based on the laser triangulation principle. According to this method a laser line is projected on the object from one direction. The imager sensor views the object from another angle defining the triangulation geometry. The resulting sensor image is evaluated by the embedded processor and converted into a single height profile. By scanning the laser line over the object a complete height image can be acquired.


The figure below demonstrates the typical triangulation geometry. The following notation is used in the approximation of height resolution:

 ΔX = resolution along the laser line (lateral)

 ΔY = resolution perpendicular to the laser line (longitudinal in the direction of motion) ΔZ = height resolution

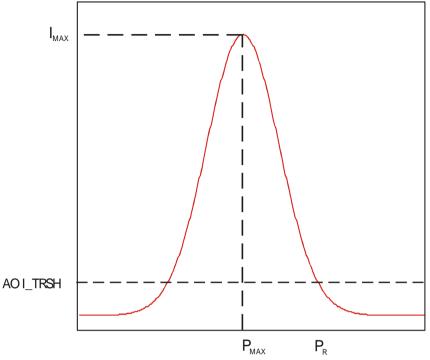
Measurement Geometry

The laser line is projected perpendicular to the object surface, while the camera views the object under the triangulation angle α . The height resolution can be approximated: $\Delta Z \approx \Delta X / \sin(\alpha)$

The C5-CS Sensor Algorithms

The C5-CS laser sensor can be operated both in a variety of 3D profile modes and in image mode. The current operation mode can be chosen by setting the parameter Camera Controls \rightarrow ModeAndAlgorithmControls \rightarrow CameraMode.

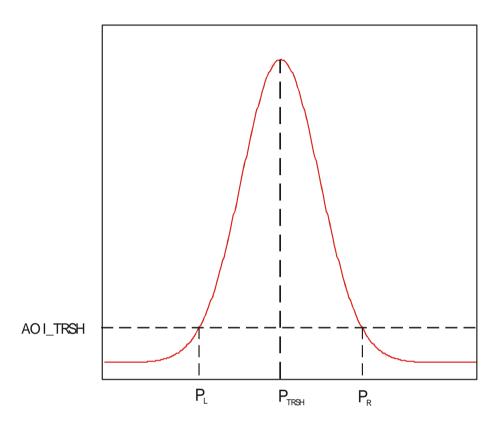
The frame rate can be increased in all camera modes by reducing the AOI size. In the image mode the frame rate is limited by the output rate of the camera interface (GigE). However, due to reduced data size in profile mode the frame rate is limited mainly by the sensor output rate. As a matter of principle, the processing speed is independent of the chosen profile mode and is determined by the AOI size.


In all profile modes only intensity values higher than the AOI intensity threshold AOI_TRSH are processed in order to suppress weak signal noise. In case that no position value can be found, e.g. no intensity value is higher than threshold, the position value 0 is returned.

The Image Mode (IMG)

In the image mode the C5-CS-GigE camera is operated similar to a standard CMOS camera. In this mode grey scale data of 8- or 10-bit resolution are acquired over the camera interface. Furthermore, the sensor can be divided into multiple regions, whose data can be summarised in one output frame.

The Maximum Intensity Profile Mode (MAX)


In this mode the position of the maximum intensity of laser beam profile is calculated. The result includes the position value of the maximum (P_{MAX}) as well as the maximum intensity value (I_{MAX}).

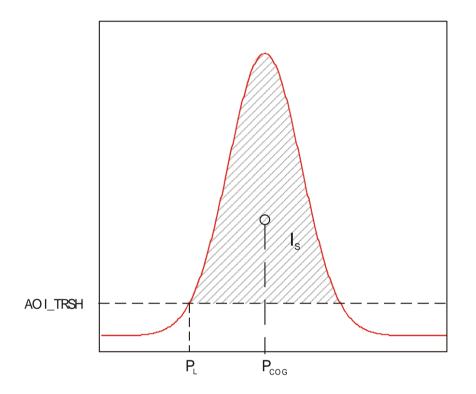
The calculation of position value is performed with simple pixel accuracy, i.e. the evaluation of 1088 rows delivers a position range from 0 to 1087 pixels (11 bit). If there is more than one local maximum (e.g. when the intensity is saturated), the position of the first detected maximum is output. In order to avoid intensity saturation, it is recommended to activate the Multiple Slope Mode of the camera. The detection of the maximum intensity position can be improved by enabling the smoothing mode of the FIR filter of the camera.

The Threshold Mode (TRSH)

In this mode the positions of left (P_L) and right (P_R) edge of the laser beam profile are detected for a given threshold value of intensity AOI_TRSH.

The position value of the laser line is approximated: $P_{TRSH} = (P_L + P_R) / 2$. In order to simplify the digital representation, the division over 2 is not performed and thus an integer representation with one subpixel is realised. The evaluation of 1088 rows delivers a position range from 0 to 1087 pixels (11 bit).

In threshold mode the camera can output either the left and right threshold position separately or the subpixel position (P_L+P_R) and the line width (P_R-P_L). Moreover, the maximum intensity value can be optionally output.


The precision of the position calculation can be improved by enabling the smoothing mode of the FIR filter of the camera.

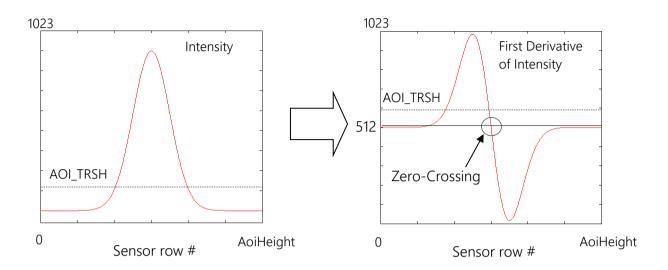
The Center Of Gravity Mode (COG)

In this mode the center of gravity of laser beam profile is calculated. For this purpose, the following parameters are computed:

Position value of the left edge of laser beam profile for a given intensity threshold value P_L , Sum of intensity value $I_s = \sum I_p$,

Sum of first order moment $M_s = \sum I_p * P$.

The position value of laser line (center of gravity of beam profile) is then obtained from:


 $P_{\text{COG}} = P_{\text{L}} + M_{\text{s}} / I_{\text{s}} \ . \label{eq:eq:p_cog}$

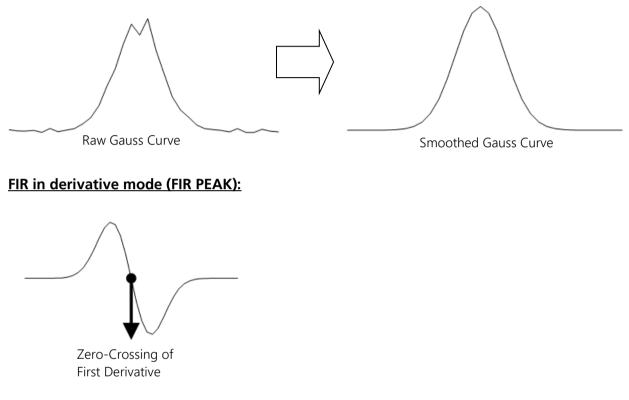
In addition, the laser line width can be delivered over the Data Output Channel DC1. The average intensity of the illumination profile can be calculated by normalising the sum of intensity value I_s with the line width.

The precision of the COG calculation (up to 6 subpixel) can be improved by enabling the smoothing mode of the FIR filter of the camera.

The FIR Peak Mode (FIR PEAK)

In this mode the first derivative of the intensity Gauss curve of laser beam profile is calculated.

The position of zero-crossing of first derivative is detected and output with subpixel accuracy (up to 6 subpixel). In this case the threshold AOI_TRSH is used to detect the first rising edge of the derived intensity signal. Valid values of AOI_TRSH range from 513 to 1023 (Mono16).



More details regarding the operation of the FIR Peak mode can be found in a separate application note.

The FIR Filter Function

The FIR filter is a signal processing function aiming to increase the precision of laser line detection in the sensor image. It consists of a digital Finite Impulse Response filter (FIR) and can be operated in a smoothing or differentiating mode.

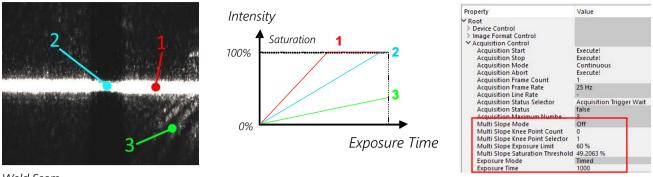
FIR in smoothing mode (in combination with MAX, TRSH and COG algorithms):

Pre-defined templates with 5, 7 or 9 coefficients let the FIR filter to be customised to the Gauss size and shape of the application.

More details regarding the operation of the FIR filter function can be found in a separate application note.

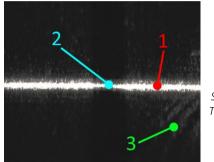
The High Dynamic Range 3D Feature (HDR-3D) of C5-CS-GigE

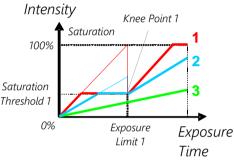
One of the most powerful features of the C5-CS series is the HDR-3D (High Dynamic Range) functionality, which allows scanning materials and surfaces with inhomogeneous reflection properties. Using HDR-3D the dynamic range of image intensity is extended up to 90dB, thus avoiding intensity saturation.


The HDR-3D comprises two independent sensor functions.

Multiple Slope Function

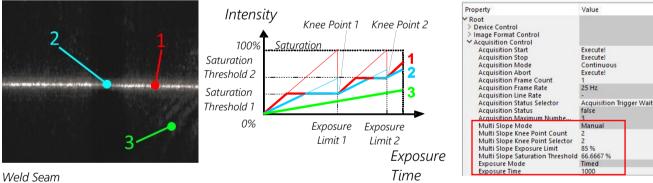
The aim of the Multiple Slope function is to avoid the saturation of pixels during sensor chip exposure. This high optical dynamic range is achieved by using a piecewise linear response. The intensity of illuminated pixels, which reach a certain level, is clipped, while darker pixels remain untouched. The clipping level can be adjusted 2 times within one exposure time to achieve a maximum of 3 slopes in the response curve. The points of the curve, where the slope changes, are called "knee points". The latter are defined through the setting of clipping levels for the intensity (thresholds) and time points within the exposure time.


These parameters can be adjusted using the GenICam registers Multi Slope Exposure Limit and Multi Slope Saturation Threshold of the Acquisition Control (XML grid visibility must be set to "Expert"). A knee point time is defined as percentage of the overall exposure time. A clipping level is defined as percentage of the maximum sensor intensity (saturation).


Single Slope Mode (Default Mode)

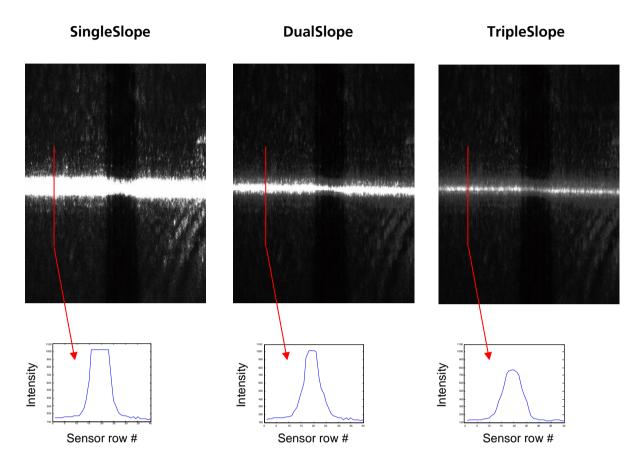
Weld Seam

Dual Slope Mode (1 Knee Point)



Property	Value	
^r Root > Device Control > Image Format Control ❤ Acquisition Control		
Acquisition Start	Execute!	
Acquisition Stop	Execute!	
Acquisition Mode	Continuous	
Acquisition Abort	Execute!	
Acquisition Frame Count	1	
Acquisition Frame Rate	25 Hz	
Acquisition Status Selector	-	
Acquisition Status Selector	Acquisition Trigger Wait	
Acquisition Maximum Numbe	false	
Multi Slope Mode	Manual	
Multi Slope Knee Point Count	1	
Multi Slope Knee Point Selector	1	
Multi Slope Exposure Limit	50 %	
Multi Slope Saturation Threshold	34.9206 %	
Exposure Mode	Timed	
Exposure Time	1000	

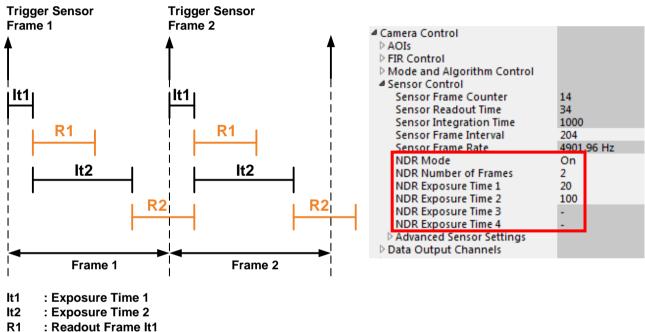
Weld Seam


Triple Slope Mode (2 Knee Points)

vvela Seal

Comparison of Slope Modes

Application of MultipleSlope function on the image of a laser line projected on a surface with nonhomogeneous reflectivity (weld seam).



More details regarding the operation of the MultipleSlope function can be found in a separate application note.

Multi-Frame Readout Mode (NDR)

With the Non-Destructive Readout (NDR) mode it is possible to readout up to 4 images at different exposure times. It allows the combination of profile data from different integration levels and it ensures accurate profile data even for difficult surfaces with strong changes in reflectance.

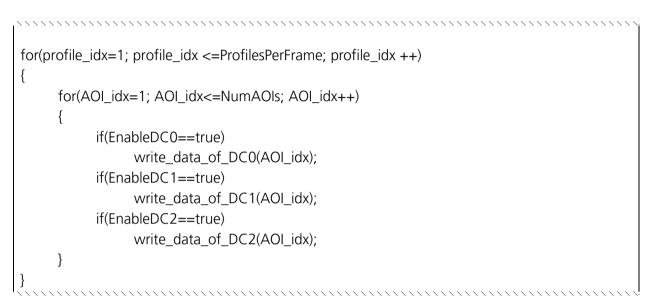
The following timing diagram shows the function of NDR with 2 frames, when subsequent sensor images are acquired. The exposure times for NDR frame 1 and 2 are depicted with It1 and It2 respectively. Please note that the readout of the second frame R2 cannot begin unless the first frame R1 has been readout. The same applies also between two subsequent sensor images, i.e. the first NDR frame of sensor image 2 cannot be readout unless the last NDR frame of sensor image 1 has been readout.

R2 : Readout Frame It2

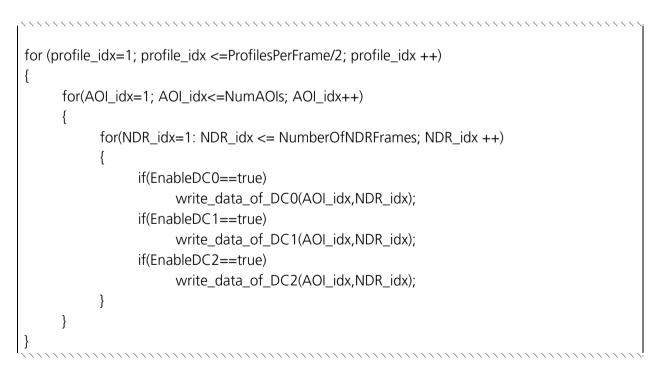
The Data Output Format of C5-CS-GigE

The image and 3D data output is performed by selecting the data channel DC0-DC2 (node Camera Controls \rightarrow DataOutput). Depending on the algorithm the data can be acquired by enabling the corresponding output Data Channel (DC). Every DC is saved in a new image row. The bit depth of output data depends on the selected algorithm. In 3D mode the camera outputs data with 16 bit. In Image mode the camera can output 8 or 10 bit data. When in 8 bit Image mode, the DC0 delivers the 8 most significant bits of the 10 bit intensity data.

Camera Mode	FIR	FIRMode	DC0	DC1	DC2
Image	False	-	Sensor intensity	Not used	Not used
	True	Derivative	First derivative of sensor intensity	Not used	Not used
	True	Smoothing	Smoothed sensor intensity	Not used	Not used
	- Falsa			Desition of vision of a set Course	
MaximumIntensity	False	-	Maximum intensity of Gauss	Position of rising edge of Gauss (PosL)	Position of maximum intensity of Gauss (PosM)
	True	Smoothing	Maximum intensity of Gauss detected in smoothed sensor image	Position of rising edge of Gauss (PosL) detected in smoothed sensor image	Position of maximum intensity of Gauss (PosM) detected in smoothed sensor image
Threshold	False	-	Maximum intensity of Gauss	 Position of rising edge of Gauss (PosL) or Gauss width (PosR-PosL) 	 Position of falling edge of Gauss (PosR) or Position of Gauss with 1/2 pixel resolution (PosL+PosR)
	True	Smoothing	Maximum intensity of Gauss detected in smoothed sensor image	 Position of rising edge of Gauss (PosL) or 	 Position of falling edge of Gauss (PosR) or


The Data Channel Assignment DC0, DC1 and DC2

Camera Mode	FIR	FIRMode	DC0	DC1	DC2
				 Gauss width (PosR-PosL) detected in smoothed sensor image 	 Position of Gauss with 1/2 pixel resolution (PosL+PosR) detected in smoothed sensor image
CenterOfGravity	False	-	Sum of intensity values of Gauss Is	 Position of rising edge of Gauss (PosL) or Gauss width (PosR-PosL) 	Position of center of gravity of Gauss with $1/(2^N)$ pixel resolution, where N=number of subpixel bits (0-6)
	True	Smoothing	Sum of intensity values of Gauss Is in smoothed sensor image	 Position of rising edge of Gauss line (PosL) or Gauss width (PosR-PosL) 	Position of center of gravity of Gauss in smoothed sensor image with 1/(2 ^N) pixel resolution, where N=number of subpixel bits (0-6)
FIRPeak	True	Derivative	Zero-crossing slope (Absolute	- Index of next sensor row to the	Position of Gauss peak with 1/(2 ^N)
T INF Cak			value)	 Index of next sensor row to the left of zero-crossing or maximum value of intensity first derivative 	pixel resolution, where N=number of subpixel bits (0-6)


The Output Frame Structure

Depending on configuration, the C5-CS-GigE writes data to the output frame according to following scheme:

1) NDR mode disabled (NDRMode="Off")

2) NDR mode enabled (NDRMode="On")

Index Definition

Index #	Range	Description
Profile_idx	1-17475	Index of Profile
AOI_idx	1-8	Index of sensor AOI
NDR_idx	1-4	Index of NDR frame

Examples of Output Frame Structure

1) Configuration with single AOI, single DC, disabled NDR mode and output of 6 profiles resulting to a frame height of 6 rows:

ProfilesPerFrame	= 6
NumAOIs	= 1
EnableDC0	= false
EnableDC1	= false
EnableDC2	= true
NDRMode	= "Off"

Row #	Description	Profile #
1	Data of DC2 readout from AOI1	1
2	Data of DC2 readout from AOI1	2
3	Data of DC2 readout from AOI1	3
4	Data of DC2 readout from AOI1	4
5	Data of DC2 readout from AOI1	5
6	Data of DC2 readout from AOI1	6

2) Configuration with two AOIs, two DCs, disabled NDR mode and output of 5 profiles resulting to frame height of 20 rows:

ProfilesPerFrame	= 5
NumAOIs	= 2
EnableDC0	= true
EnableDC1	= false
EnableDC2	= true
NDRMode	= "Off"

Row #	Description	Profile #
1	Data of DC0 readout from AOI1	
2	Data of DC2 readout from AOI1	1
3	Data of DC0 readout from AOI2	'
4	Data of DC2 readout from AOI2	
5	Data of DC0 readout from AOI1	
6	Data of DC2 readout from AOI1	2
7	Data of DC0 readout from AOI2	
8	Data of DC2 readout from AOI2	
9	Data of DC0 readout from AOI1	
10	Data of DC2 readout from AOI1	- 3
11	Data of DC0 readout from AOI2	
12	Data of DC2 readout from AOI2	
13	Data of DC0 readout from AOI1	
14	Data of DC2 readout from AOI1	4
15	Data of DC0 readout from AOI2	
16	Data of DC2 readout from AOI2	
17	Data of DC0 readout from AOI1	
18	Data of DC2 readout from AOI1	- 5
19	Data of DC0 readout from AOI2	
20	Data of DC2 readout from AOI2	

3) Configuration with single AOI, single DC, NDR mode with two NDR frames and output of 3 profiles resulting to a frame height of 6 rows:

ProfilesPerFrame	= 3
NumAOIs	= 1
EnableDC0	= false
EnableDC1	= false
EnableDC2	= true
NDRMode	= "On"
NumberOfNDRFrames = 2	

Row #	Description	Profile #
	Data of DC2 extracted from NDR1, readout from	
1	AOI1	1
	Data of DC2 extracted from NDR2, readout from	I
2	AOI1	
	Data of DC2 extracted from NDR1, readout from	
3	AOI1	2
	Data of DC2 extracted from NDR2, readout from	2
4	AOI1	
-	Data of DC2 extracted from NDR1, readout from	
5	AOI1	3
	Data of DC2 extracted from NDR2, readout from	
6	AOI1	

Advanced AOI Functions

The C5-CS-GigE features an area CMOS sensor, whose frame rate depends on the number of pixels to readout. By defining a sensor Area of Interest (AOI) the frame rate and hence the profile speed will be significantly increased due to the smaller number of pixels to readout.

In some cases, the AOI position may not be constant and it should follow the image of laser line on the camera sensor. The C5-CS-GigE features functions for performing an automatic AOI positioning (AOI-Search) as well as line tracking (AOI-Tracking).

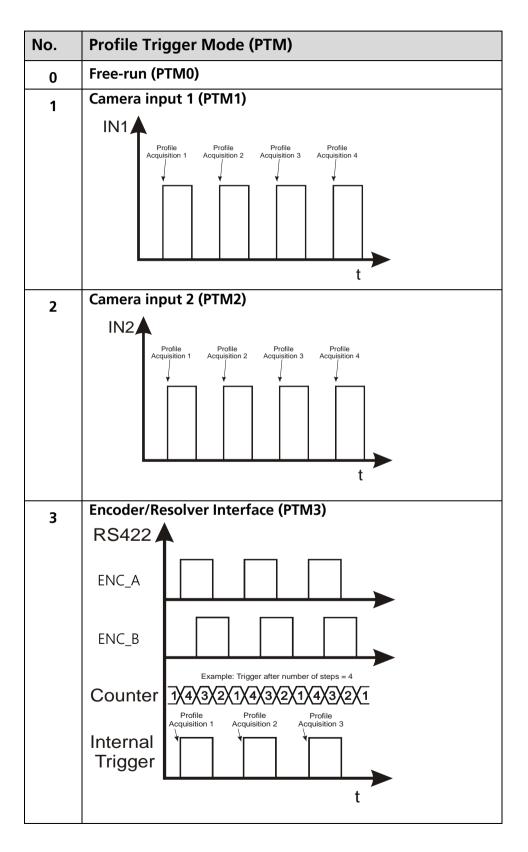
AOI-Search

The AOI-Search mode can be used in 2D mode as well as in 3D mode and has the benefit to adjust the AOI at the start of the acquisition to the optimal position of the laser line. In that case the laser line is automatically centered to the AOI.

The user must only define the minimum required AOI-Height (number of required sensor rows) for the expected laser line and afterwards the camera will adjust the vertical AOI-Offset (AoiOffsetY) value to the best position.

AOI-Tracking

The automatic AOI-Tracking is the dynamic version of the static AOI-Search mode. While the AOI-Search is only working at the beginning of each 3D acquisition, the AOI-Tracking mode is working continuously during 3D image acquisition.


Thus, 3D profile acquisition with AOI-Tracking is able to cover the complete image/sensor size although the defined AOI size could be much smaller. This is very useful in case of applications involving continuous profile measurements with variable distances to the surface.

A detailed description of these functions can be found in a separate application note.

C5-CS-GigE Triggering

Description of Profile Trigger Modes

Trigger Control – RS422 Resolver

The *TriggerCoord* node always counts all the raw trigger signals arriving at the camera

-> rising AND falling edge!

The *TriggerDivider* is used internally by the camera. The camera doesn't change its behavior if the *TriggerDivider* is set to another value. A *TriggerDivider* of 10 for example will use every tenth incoming trigger for one profile measurement.

If single-ended encoder signals are required it is set over *TriggerSingleChannelMode*. Triggering over Channel A or B or over Input1 and Input2 is then possible.

If other encoder signals than RS422 are needed, use the Inputs of the camera instead of the encoder inputs and set *UseAlternateResolverInputs* to true.

Name	Interface	Access	Visibility	Description
TriggerDivider	llnteger	RW	Beginner	Trigger divider
(*)				Min: 1
				Max: 65535
				Increment: 1
TriggerCoord	llnteger	RO	Beginner	Trigger coordinate
TriggerDirectionMode	IBoolean	RW	Beginner	Count resolver pulses in both directions
TriggerReverseDirection	IBoolean	RW	Beginner	Reverse the resolver count direction
TriggerSingleChannelMode	IEnumeration	RW	Guru	Enable resolver in single channel mode
(*)				(1): Disabled (Value= 0)
				(2): EnableIn1 (Value= 1)
				(3): EnableIn2 (Value= 2)
TriggerDividerLoadAtStart (*)	IBoolean	RW	Beginner	Load trigger divider upon start trigger
LoadTriggerDivider (*)	ICommand	WO*	Beginner	Load trigger divider
ClearTriggerCoord	ICommand	WO*	Beginner	Reset trigger coordinate
ResetTriggerCoordZeroPos	IEnumeration	RW	Beginner	Reset the Trigger Coordinate/Counter at Zero Position (Index, Z-Channel)

C5-CS Series User Manual Rev. 1.8

Name	Interface	Access	Visibility	Description
				(1): Off (Value= 0)
				(2): On (Value= 1)
TriggerCoordinateCountAlways	IBoolean	RW	Guru	TRUE: Count trigger coordinate always, FALSE: Count trigger coordinate
				during image acquisition only
UseAlternateResolverInputs	IBoolean	RW	Guru	Use IN1/IN2 instead of A/B as inputs
(*)				
UseAlternateResolverInputsInverted	IBoolean	RW	Guru	Use inverted IN1/IN2
(*)				

Description of Modes for Triggering of Sequencer/Frame and Profile Acquisition

No.	Sequencer/Frame Trigger Mode	Profile Trigger Mode (PTM)
0	Free-run	PTM0 (free-run)
		PTM1 (IN1)
		PTM2 (IN2)
1	Start/stop over camera input 1/2 <u>Continuous</u> frame acquisition is started with the rising edge of camera input 1 (IN1) and stopped with rising edge of	PTM0 (free-run)
	IN1 IN2 When "stop" occurs, the frame is not transmitted immediately over the GigE interface but the sensor continues to acquire profile data, until the predefined frame height is reached.	PTM3 (RS422)
2	Trigger one frame over camera input 1 Single frame acquisition is triggered over the rising edge of camera input 1 (IN1).	PTM0 (free-run) PTM2 (IN2) PTM3 (RS422)

No.	Sequencer/Frame Trigger Mode	Profile Trigger Mode (PTM)
3	Gate over camera input 1 Continuous frame acquisition is performed as long as the	PTM0 (free-run)
	camera input 1 is on high state.	PTM2 (IN2)
	start trigger of sequencer	PTM3 (RS422)
	stop trigger of sequencer	
	t	
4	Start/stop with instant transmission over camera input 1/2	PTM0 (free-run)
	<u>Continuous</u> frame acquisition is started with rising edge of camera input 1 (IN1) and stopped with rising edge of camera input 2 (IN2).	PTM3 (RS422)
	IN1 IN1 IN2	
	When "stop" occurs, the frame is transmitted immediately over the GigE interface. Using the Chunk Data mode of C5- CS sensor, it is possible to determine how many rows of the frame contain valid data (see ChunkImageInfo for details).	
5	AutoStart (no external signal is required)	PTM0 (free-run)
		PTM1(IN1) PTM2 (IN2)
		PTM2 (IN2) PTM3 (RS422)

Remarks:

The above table (except AutoStart) applies also to acquisition in image mode. In this case the sensor delivers a gray scale sensor image for every profile trigger.

A detailed description of the AutoStart function can be found in a separate application note.

The Chunk Data Mode of C5-CS-GigE

General Description

The C5-CS-GigE features a Chunk Data mode for providing additional information to the acquired image data. The implementation of XML nodes is performed according to SFNC 1.4:

- Category ChunkDataControl
- ChunkModeActive
- ChunkModeSelector (OneChunkPerFrame, OneChunkPerProfile)

The ChunkData generated by the camera have the following format:

- ChunkImage
- 1...N x ChunkAcqInfo
- ChunkImageInfo

Depending on camera mode (image or 3D) the ChunkData block ("ChunkAcqInfo") can be sent as follows:

- In image mode, the camera can send only one ChunkAcqInfo block per image frame.
- In 3D mode, the camera can send one ChunkAcqInfo block either per 3D frame ("OneChunkPerFrame") or per 3D profile ("OneChunkPerProfile").

The "ChunkImageInfo" is the last ChunkData sent by the camera and contains following data:

- Number of valid rows in ChunkImage
- Number of valid ChunkAcqInfo blocks
- Flags identifying the current frame as "Start" or "Stop" and the buffer status in AutoStart mode

The ChunkAcqInfo block consists of totally 32 bytes containing following data

- 64-bit timestamp
- 32-bit frame counter
- 32-bit trigger coordinate
- 8-bit Trigger status
- 32-bit I/O Status
- 88-bit AOI information

The data of timestamp, frame counter, trigger coordinate, trigger status and I/O status are assigned at the start of every image integration.

When ChunkMode is disabled, the camera uses the "regular" GEV image protocol, in which the optional transfer of frames with variable height and payload is supported.

Furthermore, when ChunkMode is enabled, the camera sends the full payload, even if the ChunkImage or ChunkAcqInfo blocks contain partially valid data. The number of valid ChunkImage rows and ChunkAcqInfo blocks can be read from ChunkImageInfo.

For example, when in Start/Stop mode with instant frame transmission, the camera stops the frame acquisition as soon as the stop trigger occurs and transfers the complete contents of internal image

buffer. Using the ChunkImageInfo data block, it is possible to detect how many image rows and ChunkAcqInfo blocks are valid in the payload buffer.

The tag of ChunkData has big endian byte order. The data of ChunkData has little endian byte order. An endian converter for ChunkData is not supported.

Payload Layout in Chunk Data Mode

Chunk Image Data
GV_ChunkDescriptorData
for Image Data
N x GV_ChunkAcqInfo
GV_ChunkDescriptorData
for ChunkAcqInfo
GV_ChunkImageInfo
GV_ChunkDescriptorData
for ChunkImageInfo

XML Descriptors and Id's

ChunkImageInfo

<Port Name="FrameInfoPort"> <ChunkID>11119999</ChunkID> </Port>

ChunkAcqInfo

<Port Name="CameraChunkPort"> <ChunkID>66669999</ChunkID> </Port>

ChunkImage

<Port Name="ImageInfoPort"> <ChunkID>A5A5A5A5</ChunkID> </Port>

Chunk Data Structure

#pragma pack(push)
#pragma pack(1)

#define CHUNKACQINFO_TRIGGERSTATUS_BIT_TRIGGER_OVERRU #define CHUNKACQINFO_TRIGGERSTATUS_BIT_RESOLVER_CNT_U #define CHUNKACQINFO_TRIGGERSTATUS_BIT_IN0 #define CHUNKACQINFO_TRIGGERSTATUS_BIT_IN1 #define CHUNKACQINFO_TRIGGERSTATUS_BIT_OUT0 #define CHUNKACQINFO_TRIGGERSTATUS_BIT_OUT1		0x40 0x80
typedef struct _GV_ChunkAcqInfo { unsigned int timeStamp64L;// 03 unsigned int timeStamp64H; // 47 unsigned int frameCnt; // 811 signed int triggerCoord; // 1215 unsigned char triggerStatus; // 16 unsigned short DAC; // 1718 unsigned short ADC; // 1920 unsigned char INT_idx; // 21 unsigned char AOL_idx; // 22 unsigned short AOL_ys; // 2324 unsigned short AOL_dy; // 2526 unsigned short AOL_xs; // 2728 unsigned short AOL_trsh; // 2930 unsigned char AOL_alg; // 31		
<pre>#define CHUNKIMAGEINFO_FLAG_BIT_START_FRAME #define CHUNKIMAGEINFO_FLAG_BIT_STOP_FRAME #define CHUNKIMAGEINFO_FLAG_BIT_BUFFER_OVERRUN typedef struct _GV_ChunkImageInfo { unsigned int mSizeYReal; unsigned int numChunkAcqInfo; unsigned int flag;</pre>	0x02 0x04	0x01

unsigned int flag; } GV_ChunkImageInfo;

typedef struct _GV_ChunkDescriptor
{
 unsigned int descriptor;
 unsigned int length;
} GV_ChunkDescriptorData;

#pragma pack(pop)

The GigE-Vision Events

The C5-CS-GigE supports a number of events that can be monitored by a software application by means of a callback function. Events provide real time notification on various stages of the acquisition sequence and data transfer.

Event Name	Event ID , (Hex)	Description
AcquisitionStart	36882 , (9012)	Frame Acquisition is started
AcquisitionEnd	36883 , (9013)	Frame Acquisition is terminated
TransferStart	36884 , (9014)	Frame transfer is started from the camera
TransferEnd	ferEnd 36885 , (9015) Frame transfer is terminated	
AoiTrackingOn	36886 , (9016)	The AOI tracking process is started and the laser line
AUTTACKINGUT	50000, (9010)	image is valid for AOI alignment
AoiTrackingOff	36887 , (9017)	The AOI tracking process is stopped and the AOI
A0111aCKIIIgO11 50887 , (9017)		position is not updated anymore
AoiSearchFailed 36888 , (9018) AOI-Search failed to detect the laser line		AOI-Search failed to detect the laser line
AutoStarted36889 , (9019)Frame Acquisition is initiated through AutoStart		Frame Acquisition is initiated through AutoStart

The Web Interface

The service web interface gives access to basic device and runtime information aside from the common GenlCam interface. It can be accessed with an ordinary web browser, by typing the cameras IP address into the browsers URL field, e.g.: <u>http://169.254.64.2</u>. A login window appears, as the following figure shows. The static password "**admin**" gives access to the camera service web interface.

Login	×
Password	
Submi	t

Connect via web browser by using the set IP e.g. "<u>http://169.254.64.2/</u>". The static password for login is "admin".

In the header bar is the manufacture info, the model name and the serial number.

The "Device Info" panel displays model specific information.

The "Status" panel shows runtime status information.

The "Memory Statistics" have an overview of used memory for each component displaying current usage, memory size, maximum usage and error.

The "System Log" shows the complete serial log of the device.

Every panel has an *Update Button* in the panel header. Each button updates the data for the specific panel. Collapsing and opening the panel by clicking the *Arrow* on the right hand side.

At the "System Log" panel is an additional button which start an update process and will fetches every two seconds the log data. The state of auto update process is shown by *Spinning Button* (ON) or not spinning (OFF). The *Autoscroll* flag enable an automatically scroll down to the latest log entry. Over the button *Export* the complete log and JSON data of each panel data, wrapped in a single text file will exported.

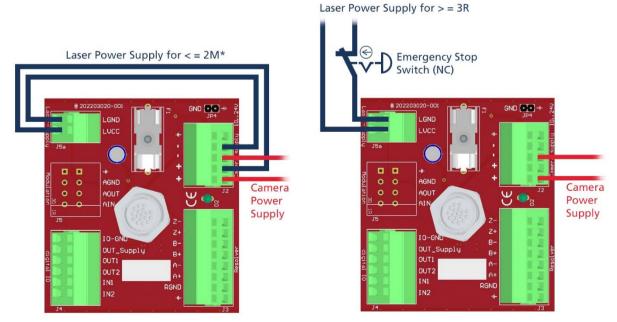
						Update 🔗
Model Name:	C5-2040-GigE		Serial Number:	21310132		
Part Number:	PN 202 203 003		Manufacture Info:	AT-Automation Te	chnology GmbH	
Device Version:	1.0.2		Firmware Version:	1.5.2		
MAC Address:	00-50-C2-8E-DD-05		IP Mode:	Persistent		
Family Type:	10000 Capabilities:	10000	IO Capabil	ities: 0		
Light Devices:	0					
latus						Update 😽
Uptime:	00:14:30		Looptime:	32µs		
Linkspeed:	1000Mbit/s		Trigger Overrun:	0		
Stream Channel:	0		Frame Counter:	0		
Control Channel:	0					
emory Statistics						Update 😽
ystem Log					C	Update 条
00005196 ms: XML-UF 00005204 ms: IP confi 00005207 ms: Persist 00005209 ms: IP: 169. 00005212 ms: Netmas 00005215 ms: Gatewa 00005218 ms: II A alw	ent IP 254.64.2 :k: 255.255.0.0 y: 0.0.0.0		SigE_2.2.0.zip			^

The External CS-IO-Panel (Breakout Board)

The CS-IO-Panel (#202 201 402) provides a user friendly way to connect the power, I/O and laser supply of the C5-CS sensor. The camera power supply includes a reverse voltage protection and features a 2A (two ampere) micro-fuse.

Fuse Specification			
Current	2A		
Dimension	5 x 20mm		
Characteristic	Т		
Operating Temperature	-50°C to +125°C		

Mechanical Drawings

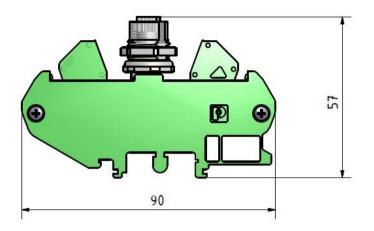


Never connect C5 camera to a CS-IO-Panel. Wrong wiring can cause damage to the camera.

Due to laser safety regulations, the power supply for the laser must be provided by a separate power source if the laser protection class is greater than 2M. On the other hand, lasers with a laser class up to 2M can be powered by bridging the I/O panel connectors as shown in the drawing below.

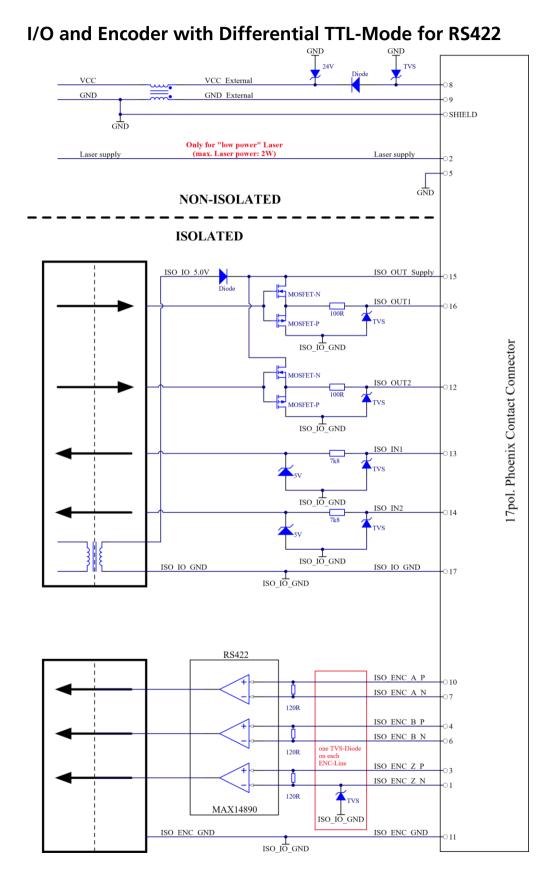
3D Sensors with < = 2M Lasers*

3D Sensors with > = 3R Lasers

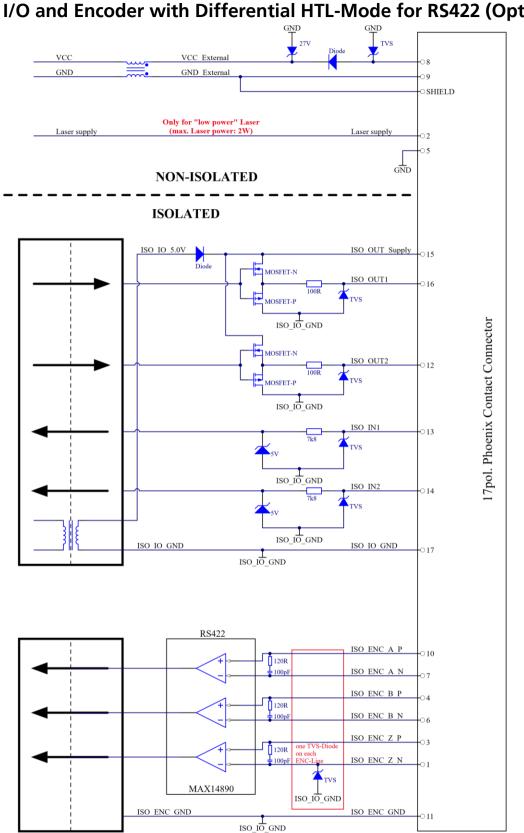


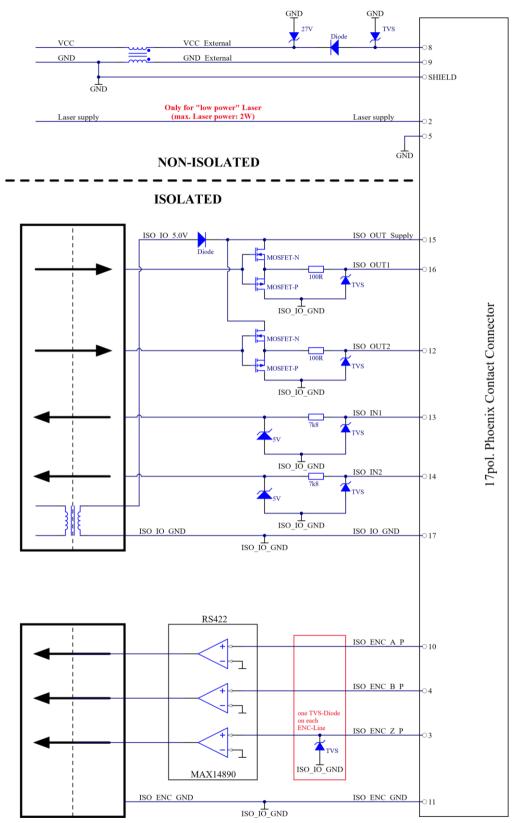

*except model C5-2040CS18-38-2X. This requires a different circuit via separate power supply cable.

Clamp No.	Signal Name	Description
J2/1	SHIELD	Sensor shield
J2/2	GND_EXT(-)	Sensor supply ground
J2/3	GND_EXT(-)	Sensor supply ground
J2/4	VCC_EXT(+)	Sensor supply voltage (+10 to +24V DC)
J2/5	VCC_EXT(+)	Sensor supply voltage (+10 to +24V DC)
J3/1	Z-	Differential encoder/resolver index track Z-
J3/2	Z+	Differential encoder/resolver index track Z+
J3/3	В-	Differential encoder/resolver track B-
J3/4	B+	Differential encoder/resolver track B+
J3/5	A-	Differential encoder/resolver track A-
J3/6	A+	Differential encoder/resolver track A+
J3/7	RGND	Encoder/Resolver ground
J3/8	SHIELD	Encoder/Resolver shield
J4/1	IO-GND	Reference ground for digital inputs (IN1, 2) and outputs (OUT1, 2)
J4/2	OUT_Supply	Power supply voltage of sensor isolated outputs (+5 to +24V DC)
J4/3	OUT1	Isolated output #1 (reference voltage OUT_Supply)
J4/4	OUT2	Isolated output #2 (reference voltage OUT_Supply)
J4/5	IN1	Isolated input #1 (+5 to +24V)
J4/6	IN2	Isolated input #2 (+5 to +24V)
J5a/1	LGND	Laser supply ground
J5a/2	LVCC	Laser supply voltage (+10 to +24V)


Clamp Configuration

Mechanical Dimension




All dimensions in mm Mount for DIN rail assembly

The C5-CS Series I/O Schematics

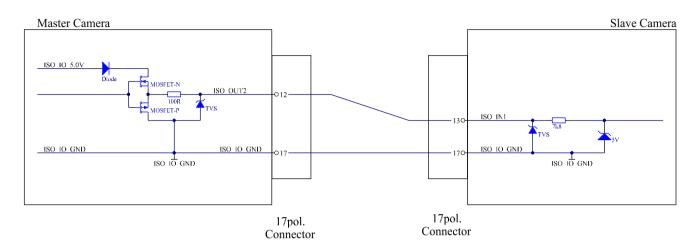
I/O and Encoder with Differential HTL-Mode for RS422 (Option)

I/O and Encoder with Single Ended HTL or TTL Mode for RS422 (Option)

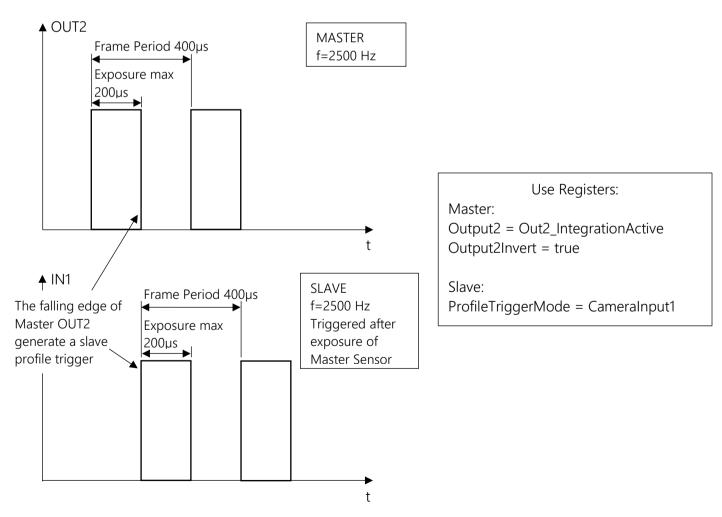
Part Number for I/O and Encoder Option

Part Number	Product Option
202 187 001	C5 Camera / CS HTL Encoder Option
202 187 002	C5 Camera / CS Single-Ended TTL Encoder Option
202 187 003	C5 Camera / CS Single-Ended HTL Encoder Option

The HTL option is available for following C5-CS models

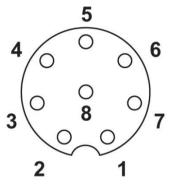

Part Number	Part Description
202 202 601	C5-1280CS35-7
202 202 604	C5-1280CS35-12
202 202 062	C5-2040CS30-12
202 202 602	C5-1280CS25-20
202 202 064	C5-1280CS23-29
202 202 066	C5-2040CS18-38-2X
202 202 603	C5-1280CS21-40
202 202 067	C5-1280CS23-47
202 202 605	C5-2040CS21-53
202 202 068	C5-1280CS23-75
202 202 074	C5-1280CS14-76
202 202 078	C5-2040CS14-100
202 202 076	C5-1280CS14-120
202 202 075	C5-1600CS14-125
202 202 073	C5-2040CS14-160

Encoder / Resolver Input Specification


Option	Specification
Differential HTL	Max. input voltage +24V DC Max. frequency: 1 MHz Min. pulse width: 475ns
Single-Ended TTL	Max. input voltage +5V DC (TTL level) Max. frequency: 5 MHz Min. pulse width: 80 ns
Single-Ended HTL	Max. input voltage +24V DC Max. frequency: 400 kHz Min. pulse width: 1.2µs

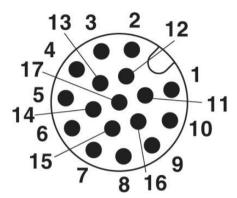
Master/Slave Connection

This schematic shows the required wiring to operate two C5-CS sensors in a Master/Slave mode. For this purpose, the OUT2 of the master sensor is exemplary connected to the trigger input IN1 of the slave sensor. The Master/Slave mode can be realized with both inputs (IN1/IN2) and outputs (OUT1/OUT2).



C5-CS-GigE Interface

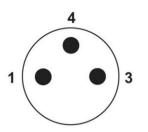
The GigE Interface



M12 GigE Female Connector Pin Assignment

Pin No.	GigE Signal Name
1	BI_DC-
2	BI_DD+
3	BI_DD-
4	BI_DA-
5	BI_DB+
6	BI_DA+
7	BI_DC+
8	BI_DB-
Shield	Shield

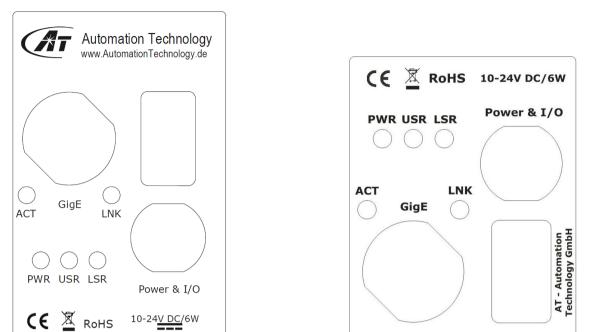
The I/O & Power Interface


M12 I/O Male Connector Pin Assignment

Pin No.	Signal Name	Description
1	ENC_Z-	Encoder/Resolver index track Z-
2	LASER_Supply ¹	Laser supply voltage (+10 to +24V DC)
3	ENC_Z+	Encoder/Resolver index track Z+
4	ENC_B+	Encoder/Resolver Track B+
5	GND_EXT	Laser/Sensor supply GND Pin1
6	ENC_B-	Encoder/Resolver Track B -
7	ENC_A-	Encoder/Resolver Track A -
8	VCC_EXT	Sensor supply voltage (+10 to +24V DC)
9	GND_EXT2	Laser/Sensor supply GND Pin2
10	ENC_A+	Encoder/Resolver Track A+
11	ENC_GND	Encoder/Resolver ground
12	OUT2	Electrically isolated digital output 2
13	IN1	Electrically isolated digital input 1 (+5 to +24V DC)
14	IN2	Electrically isolated digital input 2 (+5 to +24V DC)
15	OUT_Supply	Reference supply for digital isolated outputs (+5 to +24V DC)
16	OUT1	Electrically isolated digital output 1
17	IO_GND	Reference ground for digital inputs (IN1, 2) and outputs (OUT1, 2)
Shield	SHIELD	Is connected to sensor case

¹ Not connected in model C5-2040CS18-38-2X

M8 Laser Male Connector Pin Assignment for Model C52040CS18-38-2X



Pin No.	Signal Name	Description
1	24V (<15W)	24V Power Supply
3	N.C.	-
4	GND	Power Supply Ground

Cable Pin Assignment

Pin/Wire No.	Wire Colour	Signal Name	Description
1	Brown	Vcc_Laser	24V Power Supply
2	Black	GND	Laser Supply Ground
3	Blue	-	n.c.

Description of LEDs

LED	Description
1 (PWR)	Green On= Power On and camera start up completed Off = Power Off or camera start up failed
2 (USR)	<u>After Power On:</u> Off = no network cable connected Green On = network connected
	<u>After Network connected:</u> Green On = CCP status connected Off = CCP status disconnected
	Red On= no network found, no network cable connected
3 (LSR)	Red On = Laser is On Off = Laser is Off
4 (ACT)	Green blink = Indication of network activity
5 (LNK)	Green On = Linkspeed 1 Gbit Amber On = Linkspeed 100 Mbit Off = Linkspeed 10 Mbit or wait for end of autonegotiation

Description of LEDs for model C5-2040CS18-38-2X

Master

LED	Description
1 (USR)	<u>After Power On:</u>
	Off = No network cable connected
	Green On = Network connected
	After Network connected:
	Green On = CCP status connected
	Off = CCP status disconnected
2 (LSR)	Red On = Laser is On
	Off = Laser is Off

Slave

LED	Description
1 (LSR)	No function
2 (USR)	<u>After Power On:</u>
	Off = No network cable connected
	Green On = Network connected
	After Network connected:
	Green On = CCP status connected
	Off = CCP status disconnected
	Red On = No network found, no network cable connected
3 (PWR)	Green On = Power On and camera start up completed
	Off = Power Off or camera start up failed
4 (LNK)	Green On = Linkspeed 1 Gbit
	Amber On = Linkspeed 100 Mbit
	Off = Linkspeed 10 Mbit or wait for end of auto negotiation
5 (ACT)	Green blink = Indication of network activity

The C5-CS Cables

Cables for Power, I/O and Laser Control

Part Number #	Description
202 202 300	M12 17 pin cable for power, I/O and laser control, custom length and connector configuration (straight/angled), shielded, high flex
202 202 301	M12 17 pin cable for power, I/O and laser control, straight M12 female connector (IP67) to straight M12 male connector (IP67), shielded, length 0.5m, high flex
202 202 302	M12 17 pin cable for power, I/O and laser control, straight M12 female connector (IP67) to straight M12 male connector (IP67), shielded, length 3m, high flex
202 202 303	M12 17 pin cable for power, I/O and laser control, straight M12 female connector (IP67) to straight M12 male connector (IP67), shielded, length 5m, high flex
202 202 304	M12 17 pin cable for power, I/O and laser control, straight M12 female connector (IP67) to straight M12 male connector (IP67), shielded, length 10m, high flex
202 202 305	M12 17 pin cable for power, I/O and laser control, straight M12 female connector (IP67) to straight M12 male connector (IP67), shielded, length 15m, high flex
202 201 069	Laser power supply cable for dual sensors of C5-CS series, straight M8 female connector (IP67) to open end, length 3m, high flex

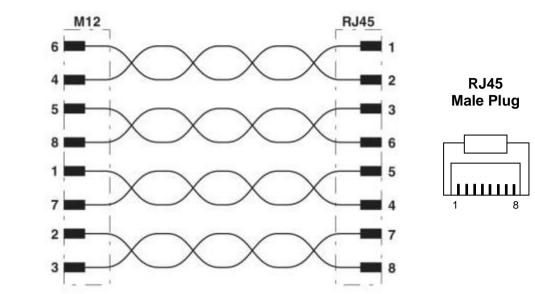
Pigtail cables:

202 202 311	M12 17 pin pigtail cable for power, I/O and laser control, straight M12 female connector (IP67) on camera plug, shielded, length 3m, high flex
202 202 312	M12 17 pin pigtail cable for power, I/O and laser control, straight M12 female connector (IP67) on camera plug, shielded, length 5m, high flex
202 202 313	M12 17 pin pigtail cable for power, I/O and laser control, straight M12 female connector (IP67) on camera plug, shielded, length 10m, high flex
202 202 314	M12 17 pin pigtail cable for power, I/O and laser control, straight M12 female connector (IP67) on camera plug, shielded, length 15m, high flex
202 202 315	M12 17 pin pigtail cable for power, I/O and laser control, straight M12 female connector (IP67) on camera plug, shielded, length 30m, high flex

Angled adapter cables:

202 201 501	M12 17 pin angled adapter cable for power, I/O and laser control, 90° angled M12 female connector (IP64) on camera plug to straight M12 male (IP64), angled connector configuration "TYPE #1", length 0.2m, standard
202 201 511	M12 17 pin angled adapter cable for power, I/O and laser control, 90° angled M12 female connector (IP64) on camera plug to straight M12 male (IP64), angled connector configuration "TYPE #2", length 0.2m, standard

Wire Assignment of M12 17 pin Pigtail Cable

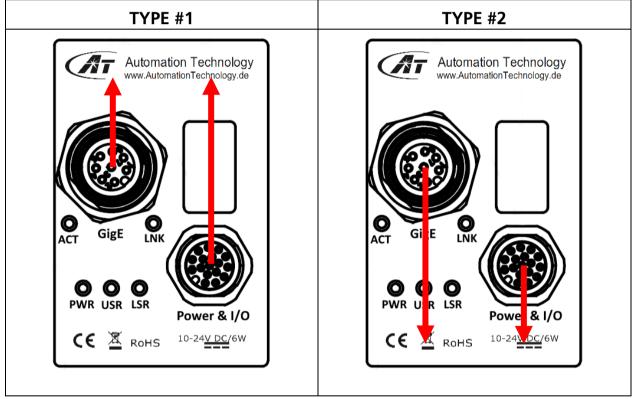

Pin/Wire No.	Wire Colour	Signal Name	Description
1	Brown	ENC_Z-	Encoder/Resolver index track Z-
2	Blue	LASER_Supply	Laser supply voltage (+10 to +24V DC)
3	White	ENC_Z+	Encoder/Resolver index track Z+
4	Green	ENC_B+	Encoder/Resolver Track B+
5	Pink	GND_EXT	Laser/Sensor supply GND Pin1
6	Yellow	ENC_B-	Encoder/Resolver Track B-
7	Black	ENC_A-	Encoder/Resolver Track A-
8	Gray	VCC_EXT	Sensor supply voltage (+10 to +24V DC)
9	Red	GND_EXT2	Laser/Sensor supply GND Pin2
10	Violette	ENC_A+	Encoder/Resolver Track A+
11	Gray/Pink	ENC_GND	Encoder/Resolver ground
12	Red/Blue	OUT2	Opto-isolated digital output 2
13	White/Green	IN1	Opto-isolated digital input 1 (+5 to +24V DC)
14	Orange/Green	IN2	Opto-isolated digital input 2 (+5 to +24V DC)
15	White/Yellow	OUT_Supply	Reference supply for digital output signals (+5 to +24V DC)
16	Yellow/ Orange	OUT1	Opto-isolated digital output 1
17	White/Gray	IO_GND	Reference ground for digital inputs (IN1, 2) and outputs (OUT1, 2)

Cables for GigE Interface

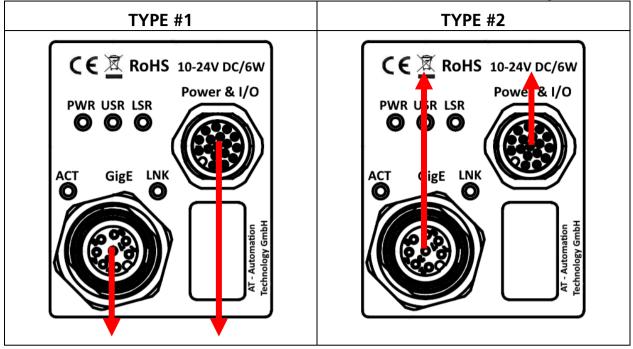
Part Number #	Description
202 201 200	M12 GigE cable with custom length and connector configuration (straight/angled)
202 201 201	M12 GigE cable, straight M12 male connector (IP67) on camera plug to RJ45 (IP20), length 0.5m, standard
202 201 202	M12 GigE cable, straight M12 male connector (IP67) on camera plug to RJ45 (IP20), length 3m, standard
202 201 203	M12 GigE cable, straight M12 male connector (IP67) on camera plug to RJ45 (IP20), length 5m, standard
202 201 204	M12 GigE cable, straight M12 male connector (IP67) on camera plug to RJ45 (IP20), length 10m, standard
202 201 205	M12 GigE cable, straight M12 male connector (IP67) on camera plug to RJ45 (IP20), length 15m, standard
202 201 206	M12 GigE cable, straight M12 male connector (IP67) on camera plug to RJ45 (IP20), length 30m, standard

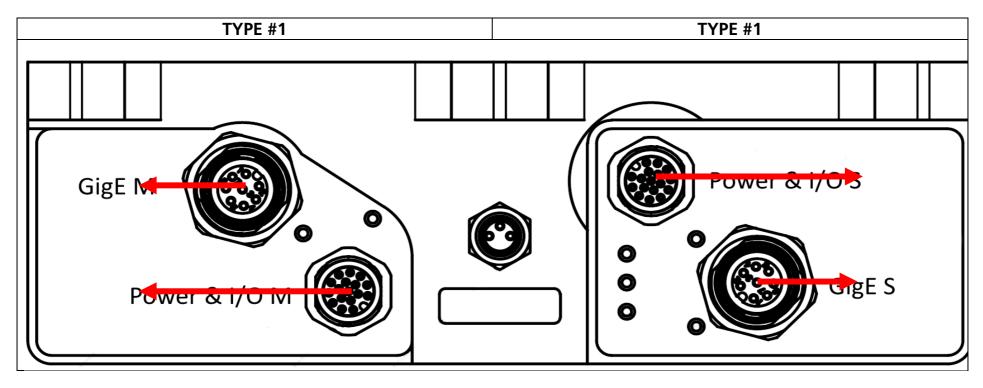
Angled adapter cables:

	M12 GigE angled adapter cable for GigE, 90° angled M12 male connector (IP64) on
202 201 502	camera plug to straight M12 female (IP64), angled connector configuration "TYPE #1",
	length 0.2m, standard
	M12 GigE angled adapter cable for GigE, 90° angled M12 male connector (IP64) on
202 201 512	camera plug to straight M12 female (IP64), angled connector configuration "TYPE #2",
	length 0.2m, standard


GigE Signal Name	Pin No. M12	Pin No. RJ45
BI_DC-	1	5
BI_DD+	2	7
BI_DD-	3	8
BI_DA-	4	2
BI_DB+	5	3
BI_DA+	6	1
BI_DC+	7	4
BI_DB-	8	6
Shield	Shield	Shield

Orientation of Angled Adapter Cable


Depending on the used sensor the orientation of the angled adapter cables differs. The option "TYPE #1" or "TYPE #2" will change the outlet direction of the angled cables.


Part Number #	Description
202 201 501	Power & I/O "TYPE #1"
202 201 502	GigE "TYPE #1"
202 201 511	Power & I/O "TYPE #2"
202 201 512	GigE "TYPE #2"

For the sensor models Model 1A, Model 2A/2B and Model 3 the adapter cables have following orientation.

For the sensor models Model 1B, Model 4 and Model 6 the adapter cables have following orientation.

For Model 5 the orientation of the angled adapter cables is as following. Only #202 201 501 and #202 201 502 are recommended.

The C5-CS Series GenlCam Features

A complete list of all GenICam features for all types of compact sensor models (C5-1280CS, C5-1600CS/C5-2040CS and C5-4090CS) can be found in separate notes.

Device Control

Description of the camera and its sensor

Image Format Control

Features controlling the size and type of the transmitted image

Acquisition Control

Feature relating to actual frame acquisition

Camera Control

Features relating to camera control

AOIs

Features relating to area of interest

FIR Control

Features relating to FIR

Mode and Algorithm Control

Features relating to camera mode and algorithm

AoiTracking Features relating to AOI-Tracking mode

AoiSearch Features relating to the AOI-Search mode

ColumnEvaluationMask Features relating to the Column Evaluation Mask. It is a global mask and valid for all functions (AOI-Tracking, AOI-Search, AutoStart)

Sensor Control

Features relating to sensor control

Advanced Sensor Settings Features relating to advanced sensor settings

Data Output Channels

Features relating to data output

Commands

Commands for camera

Light Control

Features relating to Light Control

Camera IO

Features relating to camera input and output

Trigger Control

Features relating to trigger controls

RS422 Resolver

Features relating to RS422 resolver

AutoStart

Features relating to AutoStart

Transport Layer Control

Features related to GigE Vision specification

GigE Vision

Features related to GigE Vision specification

User Set Control

Features related to the User Set Control to save and load the user device settings

Chunk Data Control

Features relating to chunk data control

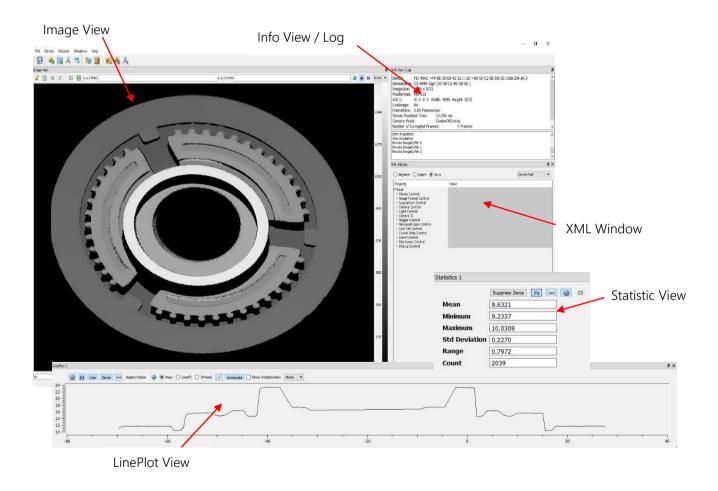
Event Control

Features required to control the generation of event notifications sent to host application

File Access Control

Category that contains the file access control features

cxExplorer Overview


The cxExplorer

P

Configuration of a C5-CS sensor can be easily done with the cxExplorer, which is a graphical user interface provided by AT - Automation Technology. With the help of the cxExplorer a sensor can be simply adjusted to the required settings. Furthermore, the cxExplorer gives the opportunity to display various information like the 2D image, 3D height image and many more.

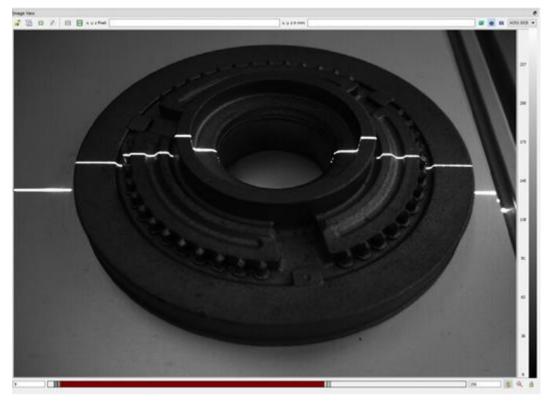
This chapter gives some general information about the layout of the cxExplorer such as an overview of how to set parameters and features.

More details regarding the operation of the cxExplorer can be found in a separate application note.

cxExplorer Features

As mentioned in the previous chapter **The C5-CS Sensor Algorithms** every C5-CS sensor is able to run in 2D image mode or in 3D mode.

The configuration of the required mode can be easily done with the cxExplorer via the *Image Wizard*, *3D Wizard* or over the *XML Window*.


Image Wizard

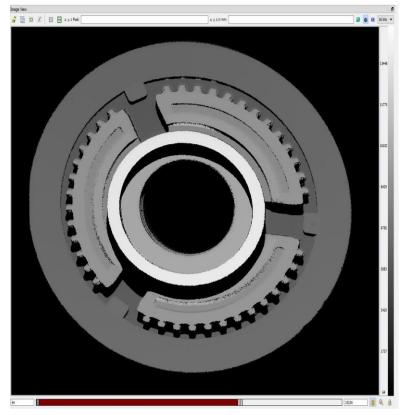
The Image Wizard is an easy way to set the camera to the 2D greyscale image mode. Select the image format, set the integration time and enable or disable the FIR filter.

mage Parameters									
mageformat:	Grey 16 Bit	•							
ntegration time in µs:	26419								
R Off/On:									
R Mode:	Smoothing	*							
R Coefficients:	SG9	Ψ.							
R Gain (1-10) :	1		Resu						
					settings for the image				
		Next Cancel	Integr	format: ation time in µ					
		Next Cancel	Integr Shutte			~			
		Next Cancel	Integr Shutte	ation time in µ r Mode: r of Aois:	us: 26419 Timed	•	3072	TRSH:	120
		Next Cancel	Integr Shutte Numbe	ation time in µ r Mode: r of Aois: YS:	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	▼ DY	3072	TRSH:	
		Next Cancel	Integr Shutte Numbe AOI0	ation time in µ r Mode: r of Aois: YS: YS:	us: 26419 Timed 1 0	▼ DY			0
		Next Cancel	Integr Shutte Numbe AOI0 AOI1 AOI2	ation time in µ r Mode: r of Aois: YS: YS:	us: 26419 Timed 1 0 0	DY DY DY	0	TRSH:	0
		Next Cancel	Integr Shutte Numbe AOI0 AOI1 AOI2 AOI3	ation time in µ r Mode: r of Aois: YS: YS: YS:	ss: 26419 Timed 1 0 0 0	DY DY DY DY DY DY	0	TRSH:	0
		Next Cancel	Integr Shutte Numbe AOI0 AOI1 AOI2 AOI3 AOI4	ation time in µ r Mode: r of Aois: YS: YS: YS: YS:	as: 26419 Timed 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DY DY DY DY DY DY DY DY DY	0	TRSH: TRSH: TRSH:	0
		Next Cancel	Integri Shutte Numbe AOI0 AOI1 AOI2 AOI3 AOI4 AOI5	ation time in µ r Mode: r of Aois: YS: YS: YS: YS: YS:	as: 26419 Timed 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DY	0 0 0 0	TRSH: TRSH: TRSH: TRSH: TRSH:	0 0 0 0
		Next Cancel	Integri Shutte Numbe AOI0 AOI1 AOI2 AOI3 AOI4 AOI5	ation time in µ r Mode: YS: YS: YS: YS: YS: YS: YS: YS: YS:	as: 26419 Timed 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DY DY	0 0 0 0 0 0 0 0 0	TRSH: TRSH: TRSH: TRSH: TRSH: TRSH:	0 0 0 0 0

Image Mode

The image mode enables the output of the 2D CMOS sensor images of the camera. That can be helpful i.e. to set and optimize the laser power, the Area Of Interest (AOI) or the exposure time.

⁽²D greyscale image)


3D Wizard

With the 3D Wizard the camera mode can be easily switched to 3D mode. Set the number of profiles per frame, choose the 3D algorithm, set the integration time and select the number of subpixel. Enable the required Output Channels and select the trigger mode to finish the wizard.

Algorithm		Output Channels		
Profiles per Frame:	3072	Data Channel 0:		
3D Algorithm:	FIR-Peak Detection Algorithm (PEAK)	Data Channel 1:		
Sensor integration time in µs:		 DC1 outputs the left edge position DC1 outputs the laser line width 		
SubPixel for 3D Algorithm:	6	Data Channel 2: Line position with 1/64 pixel resolution		
		 DC2 outputs the right edge position DC2 outputs the line position value with one subpixel 		
3D Mode Trigger Modes	Next Car	Result Result		
Frame Trigger: Free-Run	Profile Trigger:	Profiles per Frame: 3072 Camera Mode: FIRPeak Sensor Integration Time: 1500 Subpixel Bits of COG Output: 6 Control Control Con		
		Camera Mode: FIRPeak Sensor Integration Time: 1500		

3D Mode

In the 3D mode a greyscale height image can be acquired and displayed in the Image View using one of the four different algorithms. Furthermore, the intensity image can be also displayed.

(3D greyscale height image)

cxSoftware Development Kit

Automation Technology's Software Development Kit (cxSDK) is free of charge and allows the programmatically access and control of C5-CS sensors and further the usage of the 3D calibration. The cxSDK provides a C-based application-programming interface (API) with language wrappers for C++, Python, Matlab and Octave.

The cxSDK consists of the cxCam and cx3d library.

The cxCam library provides functions for discovering and enumerating connected devices via the GEV standard as well as the camera configuration, image acquisition and event handling.

The cx3d library provides functions for intrinsic and extrinsic calibration models to transform the height images (range maps) from the camera to 3D point cloud images or rectified images.

i a cx	3d_snap_point_cloud.py ×	
167	# get image from but	16fau
168		nici ct holds a reference to the data in the internal buffer, if you need the image data after cx queueBu
169		x noids a felefence to the data in the internal builer, if you need the image data after tx_duedeb. x getBufferImage(hBuffer, 0)
170	if result != base.(
171		IfferImage returned error %d" % (result))
171		
173	# deep co	ooint_cloud.cpp + × cx_3d_show_point_cloud.cpp
174	rimg = ng	p_point_cloud • (Globaler Gültigkeitsbereich)
175	ring - n	// show range image in OpenCV window
176	# Queue h	cv::Mat rangeImgMat = rangeImg;
177	result =	<pre>// save range image to file using OpenCV function</pre>
178	if result	<pre>cv::imwrite("range image.tif", rangeImgMat);</pre>
179	print	contained tech on Be_image.etc) for BeamBrace),
180	print	// normalize imgmat to Mono8 for display
181	# stop ac	<pre>double minVal, maxVal;</pre>
182	result =	cv::minMaxLoc(rangeImgMat, &minVal, &maxVal);
183	if result	<pre>std::cout << "pixel range is: " << minVal << " - " << maxVal << std::endl;</pre>
184	print	rangeImgMat -= minVal; rangeImgMat.convertTo(rangeImgMat, CV 8U, 255.0 / (maxVal - minVal));
185	print	cv::mshow("Range Image", rangeIngNat);
186	#cleanup	
187	result =	
188	if result	// convert range image to Point Cloud image
189	print	<pre>cx::Image pointCloudImg; t1 = clock();</pre>
190	print	cx::checkOk(cx 3d range2calibratedABC(hCalib, rangeImg, NULL, CX PF COORD3D ABC32f, pointCloudImg, CX 3D METRIC M
191	result =	t2 = clock();
192	if result	<pre>cout << "time elapsed for transformation to point cloud: " << double(t2 - t1) / double(CLOCKS_PER_SEC) << endl;</pre>
193	print	
194		// convert to OpenCV for visualization and saving
195		cv::Mat normals, colors; cv::Mat cloud = pointCloudImg;
196	# 6. cald	cloud.convertTo(cloud, CV 32FC3); // must be CV 32FC3 for WCloud to work
		cx::computeCloudNormals(cloud, normals);
		cx::normalizeMinMax8U(rangeImgMat, colors);
		<pre>// show point cloud cx::showPointCloud(viz, cloud, colors, normals);</pre>
		cx::snowrointciouu(viz, cioua, coiors, normais);
	-	

For more information about the handling and the integration of the cxSDK, please refer to the documentation and to various example programs contained in the cxSDK.

Quickstart a C5-CS Sensor

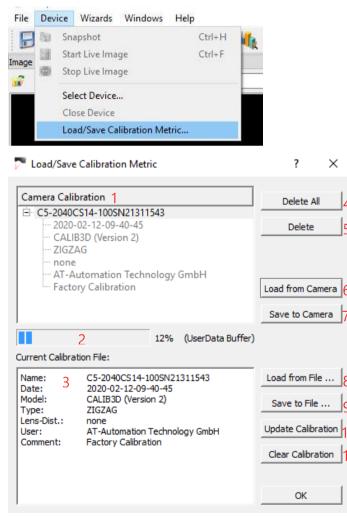
This chapter explains the handling to set up a C5-CS sensor and the computer to acquire the first images.

Set the computer to the recommended settings in the following.

- 1. **Turn off** all possible software which can block sent packages from the sensor to the PC or the other way around like **Firewalls** or **Antivirus** software.
- 2. **Connect the sensor** directly or over a switch to the PC. Identify which network interface card (NIC) is linked to the sensor.
- 3. **Disable** not needed **filter drivers** and **protocols** of the NIC port.
- 4. **Set** the computer Internet Protocol Version 4 (TCP/IPv4) to a **fix IP address** and a fix subnet mask as well as the sensor. For example: PC: 169.254.64.1, Sensor: 169.254.64.2, 255.255.0.0.
- 5. Enable Jumbo Frames if possible.
- 6. **Starting the cxExplorer** leads to the *Device Selection*. Chose the camera over the available Transport Layer and open the device. If the camera isn't visible check the IP address or search for subnets.

Device Selection	?	\times
Device GenTL Producer FD::MAC->F4-8E-38-E9-02-22 C5-2040CS23-100 (70-B3-D5-02-84-1A) SD::MAC->F4-8E-38-E9-02-22 C5-2040CS23-100 (70-B3-D5-02-84-1A) F4:8e:38:e9:02:22 AT-Automation Technology GmbH C5-2040C	S23-100	(70:
Set Persistent IP Ignore Subnet		
Force IP Discover Open Device	Can	cel

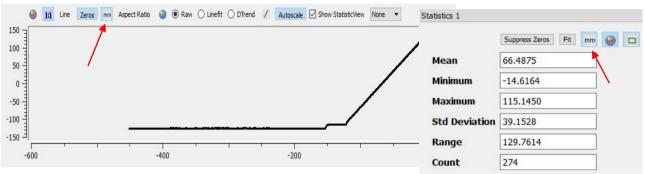
By default the sensor starts in the factory mode. For the C5-CS sensor the factory mode is either the COG or the FIR Peak mode. **Start** the continuous **image grab** over or do a snapshot over . The first images were acquired.


Calibrate the Sensor Data

The C5 compact sensor provides always non-calibrated 16Bit intensity images whereas the data channel 2 sends the grey scale range map (also called height image). Objects closer to the camera have brighter intensities, objects further away have darker intensities.

By factory every C5-CS sensor has a stored calibration file to translate pixel values into metrical values.

cxExplorer


The calibration can be loaded and applied directly in the cxExplorer over Device -> Load/Save Calibration Metric.

1	Camera Calibration	Calibration files which are saved in the camera buffer
2	Status bar	Status bar which shows how much camera memory is in use
3	Current Calibration File	The current calibration file the cxExplorer uses
4	Delete All	Delete all saved calibration files from the camera buffer
5	Delete	Delete the chosen calibration file from the camera buffer

6	Load from Camera	Load a calibration file from the camera buffer
7	Save to Camera	Save a calibration file into the camera buffer
8	Load from File	Load a calibration file from the PC
9	Save to File	Save the calibration file to the PC
10	Update Calibration	Updates the calibration to the currently used camera configuration
11	Clear Calibration	Remove the current calibration file from cxExplorer

When a calibration is loaded into the cxExplorer, either from the camera buffer (Load from Camera) or from a file from the PC (Load from File), the mm Button in the LinePlot View and the Statistic View will be available. It might be necessary to push the magnifier of the Image View to refresh the tools.

Further the tip of the pointer will now show the current position in Millimeter.

x, y, z Pixel:	1042, 1, 35675	x, y, z in mm:	1.32, 1.00, 1.37
		Ģ	

cxSDK

With the help of the cxSDK the calibration can be easily downloaded programmatically from the camera (cx_downloadFile()) and applied to a range map. To generate a calibrated point cloud use cx_3d_range2calibratedABC() or to get a calibrated ZMap use cx_3d_range2rectifiedC(). Please refer to the Visual Studio Solution examples inside the cxSDK.

cxShow3d

The cxShow3d is a graphical user interface for displaying offline calibrated point clouds. For this purpose the calibration should be downloaded and saved with the help of the cxExplorer as well as a range image in Tiff format. Afterwards both can be loaded in the cxShow3d to get a reconstructed point cloud.

Service Information

Contact

AT-Automation Technology GmbH Hermann-Bössow-Str.6-8 D-23843 Bad Oldesloe, Germany Phone: +49 4531/88011-0 Fax: +49 4531/88011-20 Mail: info@automationtechnology.de

Support

To process your support inquiries immediately, we always need the serial number of the camera, the firmware version, the device version, the camera configuration file (*.cfg), a snapshot as Tiff saved with the cxExplorer and a precise problem description.

support@AutomationTechnology.de

Product Inquiries and Price Quotations

For product inquiries and price quotations please get in touch with our sales team.

sales@AutomationTechnology.de

Warranty Conditions

Only the manufacturer can recognize the conditions of warranty. Should other parties than the manufacturer be responsible for the malfunctioning, we consider the right of warranty as void. This is the case if the unit is modified electrically or mechanically, particularly in its wiring/soldering, or if the unit is used for purposes not intended by the manufacturer, or if the unit's external wiring is faulty, or if the unit is used under conditions outside those stated in its manual.

Warranty Period

The sensors warranty for the C5-CS series is 1-year starting from the date of delivery from AT – Automation Technology GmbH.

Extended Warranty

The warranty period can be extend to maximum 36 months.

Return Policy

Before returning a sensor for repair (warranty or non-warranty) to AT – Automation Technology GmbH, AT must provide a Return Material Authorization (RMA) number. Please get in contact with AT to receive an RMA number.

rma@automationtechnology.de

The RMA form to ask for an RMA number can be downloaded at:

www.automationtechnology.de/rma

Ship the sensor carefully packed in its original shipping box or an equivalent box back to our destination in Germany, 23843 Bad Oldesloe, Hermann-Bössow-Straße 6-8.

If you purchased a camera over a distributor, please get in contact with them to start the RMA process.

Document Revision

Rev. No.	Date	Modification	
1.0	02.06.2015	First Draft	
1.1	03.03.2017	Revised Model Overview with Measurement Specification Added new GenlCam features Added new C5-CS Model Revised Laser safety guideline Added some new chapters: The Web Interface, I/O Schematics, CX Explorer Overview, Quickstart a C5-CS Sensor, Return Policy	
1.2	09.03.2017	Minor change	
1.3	13.11.2017	Added new laser options Changed 3DExplorer Overview	
1.4	12.03.2018	Added new compact sensors Removed obsolete Laser option Added new Laser option Added Master/Slave example Changed sensor label Corrected Encoder/Resolver Input signals Corrected I/O Schematics	
1.5	23.01.2019	Add warning not to connect C5 cameras to C5-CS-I/O Panels Add description for Trigger Control – RS422 Resolver Add LED description for Model 1B, Model 4 and Model 6 Add Definition Working Distance and Field of View (FOV) Add Definition Coordinate Plane Correct mechanical drawings Add cxSDK information Delete extended GenlCam feature list for C5-2040CS Add Orientation of Angled Adapter Cables Add and correct Model Overview Add new Multiple Slope image examples	
1.6	11.07.2019	Add digital input and encoder input information Correct mechanical drawing image of CS-IO-Panel Change part number and description for C5-CS series cables Correct color wire assignment for M12 17 pin pigtail cable Renamed and modify cxExplorer overview Modify Quickstart information Correct MTBF values for laser options Add subpixel limitations Add Model Overview	
1.7	20.05.2021	Correct value in AOI information of ChunkAcqInfo Add General Notes Add max. current for encoder inputs Extend Calibrate the Sensor Data Correct IEC number of enclosure rating Correct laser supply voltage Change description of angled adapter cables Change description of the IO-Panel Update service information	

Rev. No.	Date	Modification	
		Update temperature information	
		Remove C5-3360CS	
		Add information for C5-2040CS18-38-2X	
		Update laser safety information	
		Update mechanical drawings	
		Add Part Numbers	
		Add TTL and HTL options	
1.8	04.01.2022	Changed Laser options	
		Changed description of temperature ranges	

Automation Technology

Automation Technology GmbH - All rights reserved. Subject to change without prior notification.